BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 17594509)

  • 21. Distributions of transposable elements reveal hazardous zones in mammalian introns.
    Zhang Y; Romanish MT; Mager DL
    PLoS Comput Biol; 2011 May; 7(5):e1002046. PubMed ID: 21573203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transposable elements in cancer and other human diseases.
    Chenais B
    Curr Cancer Drug Targets; 2015; 15(3):227-42. PubMed ID: 25808076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alternative splicing of Alu exons--two arms are better than one.
    Gal-Mark N; Schwartz S; Ast G
    Nucleic Acids Res; 2008 Apr; 36(6):2012-23. PubMed ID: 18276646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cooperative evolution of two different TEs results in lineage-specific novel transcripts in the BLOC1S2 gene.
    Cho HM; Park SJ; Choe SH; Lee JR; Kim SU; Jin YB; Kim JS; Lee SR; Kim YH; Huh JW
    BMC Evol Biol; 2019 Oct; 19(1):196. PubMed ID: 31666001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Minimal conditions for exonization of intronic sequences: 5' splice site formation in alu exons.
    Sorek R; Lev-Maor G; Reznik M; Dagan T; Belinky F; Graur D; Ast G
    Mol Cell; 2004 Apr; 14(2):221-31. PubMed ID: 15099521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements.
    Levy A; Schwartz S; Ast G
    Nucleic Acids Res; 2010 Mar; 38(5):1515-30. PubMed ID: 20008508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution.
    Park SJ; Kim YH; Lee SR; Choe SH; Kim MJ; Kim SU; Kim JS; Sim BW; Song BS; Jeong KJ; Jin YB; Lee Y; Park YH; Park YI; Huh JW; Chang KT
    Mol Cells; 2015 Nov; 38(11):950-8. PubMed ID: 26537194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fixation of conserved sequences shapes human intron size and influences transposon-insertion dynamics.
    Sironi M; Menozzi G; Comi GP; Bresolin N; Cagliani R; Pozzoli U
    Trends Genet; 2005 Sep; 21(9):484-8. PubMed ID: 16005101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diverse splicing patterns of exonized Alu elements in human tissues.
    Lin L; Shen S; Tye A; Cai JJ; Jiang P; Davidson BL; Xing Y
    PLoS Genet; 2008 Oct; 4(10):e1000225. PubMed ID: 18841251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA-editing-mediated exon evolution.
    Lev-Maor G; Sorek R; Levanon EY; Paz N; Eisenberg E; Ast G
    Genome Biol; 2007; 8(2):R29. PubMed ID: 17326827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multifactorial interplay controls the splicing profile of Alu-derived exons.
    Ram O; Schwartz S; Ast G
    Mol Cell Biol; 2008 May; 28(10):3513-25. PubMed ID: 18332115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data.
    Zhang W; Edwards A; Fan W; Fang Z; Deininger P; Zhang K
    BMC Genomics; 2013 Aug; 14():584. PubMed ID: 23984937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs.
    Kapusta A; Kronenberg Z; Lynch VJ; Zhuo X; Ramsay L; Bourque G; Yandell M; Feschotte C
    PLoS Genet; 2013 Apr; 9(4):e1003470. PubMed ID: 23637635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origin of introns by 'intronization' of exonic sequences.
    Irimia M; Rukov JL; Penny D; Vinther J; Garcia-Fernandez J; Roy SW
    Trends Genet; 2008 Aug; 24(8):378-81. PubMed ID: 18597887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alternative splicing of human height-related zinc finger and BTB domain-containing 38 gene through Alu exonization.
    Hong KW; Shin YB; Jin HS; Lim JE; Choi JY; Chang KT; Kim HS; Oh B
    Biochem Genet; 2011 Jun; 49(5-6):283-91. PubMed ID: 21188497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid.
    Ying M; Zhan Z; Wang W; Chen D
    Gene; 2009 Nov; 447(2):72-85. PubMed ID: 19664694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons.
    Lev-Maor G; Sorek R; Shomron N; Ast G
    Science; 2003 May; 300(5623):1288-91. PubMed ID: 12764196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A single mutation in the ACTR8 gene associated with lineage-specific expression in primates.
    Choe SH; Park SJ; Cho HM; Park HR; Lee JR; Kim YH; Huh JW
    BMC Evol Biol; 2020 Jun; 20(1):66. PubMed ID: 32503430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disease-causing mutations improving the branch site and polypyrimidine tract: pseudoexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail.
    Meili D; Kralovicova J; Zagalak J; Bonafé L; Fiori L; Blau N; Thöny B; Vorechovsky I
    Hum Mutat; 2009 May; 30(5):823-31. PubMed ID: 19280650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A.
    Ganguly A; Dunbar T; Chen P; Godmilow L; Ganguly T
    Hum Genet; 2003 Sep; 113(4):348-52. PubMed ID: 12884004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.