These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17594746)

  • 1. Feasibility of extended use of an electromagnetic lithotripter beyond the manufacturer's recommended maintenance schedule.
    Chen TY; Ponsot Y; Brouillette M; Tétrault JP; Tu le M
    Can J Urol; 2007 Jun; 14(3):3560-5. PubMed ID: 17594746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experiences with lithotripters: measurements of standardized fragmentation.
    Sass W; Steffen K; Matura E; Folberth W; Dreyer H; Seifert J
    J Stone Dis; 1992 Apr; 4(2):129-40. PubMed ID: 10149178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameters for predicting electromagnetic lithotripter failure: quality assurance implications.
    Davros WJ; Garra BS; Goldberg JA; Murphy LL; Zeman RK
    J Stone Dis; 1992 Jul; 4(3):220-6. PubMed ID: 10147669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig.
    Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S
    BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the fragmentation and clearance after shock wave lithotripsy.
    Kekre NS; Kumar S
    Curr Opin Urol; 2008 Mar; 18(2):205-9. PubMed ID: 18303545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamentals for the development of a lithotripter of the new generation. A survey of the principle knowledge and skills contributing to the progress in lithotripter efficiency for a wide scale of application.
    Köhler G; Schätzle U; Granz B
    Eur Urol; 1991; 20(4):327-33. PubMed ID: 1814750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure distribution and energy flow in the focal region of two different electromagnetic shock wave sources.
    Folberth W; Köhler G; Rohwedder A; Matura E
    J Stone Dis; 1992 Jan; 4(1):1-7. PubMed ID: 10149172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outpatient basis extracorporeal shock wave lithotripsy for ureter stones: efficacy of the third generation lithotripter as the first line treatment.
    Murota-Kawano A; Ohya K; Sekine H
    Int J Urol; 2008 Mar; 15(3):210-5. PubMed ID: 18304214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracorporeal shock wave lithotripsy in children: Results and short-term complications.
    da Cunha Lima JP; Duarte RJ; Cristofani LM; Srougi M
    Int J Urol; 2007 Aug; 14(8):684-8. PubMed ID: 17681055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anesthesia for extracorporeal shockwave lithotripsy: Teikyo University Hospital experience using the third generation lithotripter.
    Kurihara K; Kamiyama Y; Saito K; Yasuda M; Ide H; Muto S; Okada H; Horie S
    Hinyokika Kiyo; 2007 Aug; 53(8):545-9. PubMed ID: 17874545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A performance analysis of an extracorporeal shock wave lithotripter: spatial pressure distribution and the effects of lithotripter voltage, electrode life, and tissue attenuation.
    Monaghan P; Gilbert JL; Prystowsky JB
    J Stone Dis; 1992 Oct; 4(4):289-300. PubMed ID: 10147810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic streaming in lithotripsy fields: preliminary observation using a particle image velocimetry method.
    Choi MJ; Doh DH; Hwang TG; Cho CH; Paeng DG; Rim GH; Coleman AJ
    Ultrasonics; 2006 Feb; 44(2):133-45. PubMed ID: 16376400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy.
    Jain A; Shah TK
    Eur Urol; 2007 Jun; 51(6):1680-6; discussion 1686-7. PubMed ID: 17112655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracorporeal shock wave lithotripsy in children: equivalent clearance rates to adults is achieved with fewer and lower energy shock waves.
    Kurien A; Symons S; Manohar T; Desai M
    BJU Int; 2009 Jan; 103(1):81-4. PubMed ID: 18727616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outcomes using a fourth-generation lithotripter: a new benchmark for comparison?
    Nomikos MS; Sowter SJ; Tolley DA
    BJU Int; 2007 Dec; 100(6):1356-60. PubMed ID: 17850387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the body wall on lithotripter shock waves.
    Li G; McAteer JA; Williams JC; Berwick ZC
    J Endourol; 2014 Apr; 28(4):446-52. PubMed ID: 24308532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock wave lithotripsy versus semirigid ureteroscopy for proximal ureteral calculi (<20 mm): a comparative matched-pair study.
    Youssef RF; El-Nahas AR; El-Assmy AM; El-Tabey NA; El-Hefnawy AS; Eraky I; El-Kenawy MR; El-Kappany HA; Sheir KZ
    Urology; 2009 Jun; 73(6):1184-7. PubMed ID: 19362338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical predictors of stone fragmentation using slow-rate shock wave lithotripsy.
    Li WM; Wu WJ; Chou YH; Liu CC; Wang CJ; Huang CH; Lee YC
    Urol Int; 2007; 79(2):124-8. PubMed ID: 17851280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of water temperature on pressure pulses generated by an electromagnetic type lithotripter.
    Augat P; Claes L
    Ultrasound Med Biol; 1995; 21(1):89-96. PubMed ID: 7754582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.