BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17595020)

  • 1. Pasty injectable biodegradable polymers derived from natural acids.
    Krasko MY; Domb AJ
    J Biomed Mater Res A; 2007 Dec; 83(4):1138-1145. PubMed ID: 17595020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolytic degradation of ricinoleic-sebacic-ester-anhydride copolymers.
    Krasko MY; Domb AJ
    Biomacromolecules; 2005; 6(4):1877-84. PubMed ID: 16004424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable Pasty Biodegradable Polyesters Derived from Castor Oil and Hydroxyl-Acid Lactones.
    Steinman NY; Domb AJ
    J Pharmacol Exp Ther; 2019 Sep; 370(3):736-741. PubMed ID: 31092539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo degradation and elimination of injectable ricinoleic acid-based poly(ester-anhydride).
    Vaisman B; Ickowicz DE; Abtew E; Haim-Zada M; Shikanov A; Domb AJ
    Biomacromolecules; 2013 May; 14(5):1465-73. PubMed ID: 23530926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ricinoleic acid-based biopolymers.
    Teomim D; Nyska A; Domb AJ
    J Biomed Mater Res; 1999 Jun; 45(3):258-67. PubMed ID: 10397984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(sebacic acid-co-ricinoleic acid) biodegradable injectable in situ gelling polymer.
    Shikanov A; Domb AJ
    Biomacromolecules; 2006 Jan; 7(1):288-96. PubMed ID: 16398527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel--effect of additives.
    Shikanov A; Ezra A; Domb AJ
    J Control Release; 2005 Jun; 105(1-2):52-67. PubMed ID: 15955366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity.
    Shikanov A; Vaisman B; Krasko MY; Nyska A; Domb AJ
    J Biomed Mater Res A; 2004 Apr; 69(1):47-54. PubMed ID: 14999750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternating Poly(ester-anhydride) by Insertion Polycondensation.
    Haim-Zada M; Basu A; Hagigit T; Schlinger R; Grishko M; Kraminsky A; Hanuka E; Domb AJ
    Biomacromolecules; 2016 Jun; 17(6):2253-9. PubMed ID: 27198864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gamma-irradiation stability of saturated and unsaturated aliphatic polyanhydrides--ricinoleic acid based polymers.
    Teomim D; Mäder K; Bentolila A; Magora A; Domb AJ
    Biomacromolecules; 2001; 2(3):1015-22. PubMed ID: 11710004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computed tomography of Lipiodol-loaded biodegradable pasty polymer for implant visualization.
    Sosna J; Havivi E; Khan W; Appelbaum L; Nyska A; Domb AJ
    Contrast Media Mol Imaging; 2014; 9(3):246-51. PubMed ID: 24700752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of poly(sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel.
    Shikanov A; Vaisman B; Shikanov S; Domb AJ
    J Biomed Mater Res A; 2010 Mar; 92(4):1283-91. PubMed ID: 19343769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolytic degradation and drug release of ricinoleic acid-lactic acid copolyesters.
    Slivniak R; Ezra A; Domb AJ
    Pharm Res; 2006 Jun; 23(6):1306-12. PubMed ID: 16741657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear fatty acid terminated polyanhydrides.
    Teomim D; Domb AJ
    Biomacromolecules; 2001; 2(1):37-44. PubMed ID: 11749153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of poly(DL-lactide)-grafted gelatins as bioabsorbable amphiphilic polymers.
    Ma J; Cao H; Li Y; Li Y
    J Biomater Sci Polym Ed; 2002; 13(1):67-80. PubMed ID: 12003076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility and safety evaluation of a ricinoleic acid-based poly(ester-anhydride) copolymer after implantation in rats.
    Vaisman B; Motiei M; Nyska A; Domb AJ
    J Biomed Mater Res A; 2010 Feb; 92(2):419-31. PubMed ID: 19191319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ester-anhydrides) Derived from Esters of Hydroxy Acid and Cyclic Anhydrides.
    Arun Y; Ghosh R; Domb AJ
    Biomacromolecules; 2022 Aug; 23(8):3417-3428. PubMed ID: 35881559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A library of L-tyrosine-derived biodegradable polyarylates for potential biomaterial applications, part I: synthesis, characterization and accelerated hydrolytic degradation.
    Huang X; Shen CY; Chen JC; Li Q
    J Biomater Sci Polym Ed; 2009; 20(7-8):935-55. PubMed ID: 19454161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of biodegradable hyperbranched poly(ester-amide)s based on natural material.
    Li X; Su Y; Chen Q; Lin Y; Tong Y; Li Y
    Biomacromolecules; 2005; 6(6):3181-8. PubMed ID: 16283744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable polyanhydride synthesized from sebacic acid and ricinoleic acid.
    Haim-Zada M; Basu A; Hagigit T; Schlinger R; Grishko M; Kraminsky A; Hanuka E; Domb AJ
    J Control Release; 2017 Jul; 257():156-162. PubMed ID: 27126904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.