BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17595023)

  • 1. Comparative in vitro study of the cell proliferation of ovine and human osteoblast-like cells on conventionally and rapid prototyping produced scaffolds tailored for application as potential bone replacement material.
    Wagner M; Kiapur N; Wiedmann-Al-Ahmad M; Hübner U; Al-Ahmad A; Schön R; Schmelzeisen R; Mülhaupt R; Gellrich NC
    J Biomed Mater Res A; 2007 Dec; 83(4):1154-1164. PubMed ID: 17595023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods.
    Namini MS; Bayat N; Tajerian R; Ebrahimi-Barough S; Azami M; Irani S; Jangjoo S; Shirian S; Ai J
    J Orthop Surg Res; 2018 Mar; 13(1):63. PubMed ID: 29587806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative in vitro study of the proliferation and growth of ovine osteoblast-like cells on various alloplastic biomaterials manufactured for augmentation and reconstruction of tissue or bone defects.
    Schmitt SC; Wiedmann-Al-Ahmad M; Kuschnierz J; Al-Ahmad A; Huebner U; Schmelzeisen R; Gutwald R
    J Mater Sci Mater Med; 2008 Mar; 19(3):1441-50. PubMed ID: 17914632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative in vitro study of the proliferation and growth of human osteoblast-like cells on various biomaterials.
    Itthichaisri C; Wiedmann-Al-Ahmad M; Huebner U; Al-Ahmad A; Schoen R; Schmelzeisen R; Gellrich NC
    J Biomed Mater Res A; 2007 Sep; 82(4):777-87. PubMed ID: 17326141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering.
    Ni S; Chang J; Chou L
    J Biomed Mater Res A; 2006 Jan; 76(1):196-205. PubMed ID: 16265636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated angiogenic host tissue response to poly(L-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells.
    Tavassol F; Schumann P; Lindhorst D; Sinikovic B; Voss A; von See C; Kampmann A; Bormann KH; Carvalho C; Mülhaupt R; Harder Y; Laschke MW; Menger MD; Gellrich NC; Rücker M
    Tissue Eng Part A; 2010 Jul; 16(7):2265-79. PubMed ID: 20184434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical starch-based fibrous scaffold for bone tissue engineering applications.
    Martins A; Chung S; Pedro AJ; Sousa RA; Marques AP; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2009 Jan; 3(1):37-42. PubMed ID: 19021239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.
    Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N
    J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering.
    Ngiam M; Liao S; Patil AJ; Cheng Z; Chan CK; Ramakrishna S
    Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering.
    Qian J; Xu W; Yong X; Jin X; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():95-101. PubMed ID: 24433891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine.
    Vila M; García A; Girotti A; Alonso M; Rodríguez-Cabello JC; González-Vázquez A; Planell JA; Engel E; Buján J; García-Honduvilla N; Vallet-Regí M
    Acta Biomater; 2016 Nov; 45():349-356. PubMed ID: 27639311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue engineering of composite grafts: Cocultivation of human oral keratinocytes and human osteoblast-like cells on laminin-coated polycarbonate membranes and equine collagen membranes under different culture conditions.
    Glaum R; Wiedmann-Al-Ahmad M; Huebner U; Schmelzeisen R
    J Biomed Mater Res A; 2010 May; 93(2):704-15. PubMed ID: 19609875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications.
    Wang Y; Shi X; Ren L; Yao Y; Zhang F; Wang DA
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):84-92. PubMed ID: 20091906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.
    Muzio G; Martinasso G; Baino F; Frairia R; Vitale-Brovarone C; Canuto RA
    J Biomater Appl; 2014 Nov; 29(5):728-36. PubMed ID: 24994880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects.
    Haberstroh K; Ritter K; Kuschnierz J; Bormann KH; Kaps C; Carvalho C; Mülhaupt R; Sittinger M; Gellrich NC
    J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):520-30. PubMed ID: 20225216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone.
    Gao Y; Cao WL; Wang XY; Gong YD; Tian JM; Zhao NM; Zhang XF
    J Mater Sci Mater Med; 2006 Sep; 17(9):815-23. PubMed ID: 16932863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.