BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 17595116)

  • 1. Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.
    Sucharitakul J; Phongsak T; Entsch B; Svasti J; Chaiyen P; Ballou DP
    Biochemistry; 2007 Jul; 46(29):8611-23. PubMed ID: 17595116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis.
    Sucharitakul J; Chaiyen P; Entsch B; Ballou DP
    Biochemistry; 2005 Aug; 44(30):10434-42. PubMed ID: 16042421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii.
    Sucharitakul J; Chaiyen P; Entsch B; Ballou DP
    J Biol Chem; 2006 Jun; 281(25):17044-17053. PubMed ID: 16627482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the flavin reductase of Acinetobacter baumannii p-hydroxyphenylacetate 3-hydroxylase (HPAH) and identification of amino acid residues underlying its regulation by aromatic ligands.
    Yuenyao A; Petchyam N; Kamonsutthipaijit N; Chaiyen P; Pakotiprapha D
    Arch Biochem Biophys; 2018 Sep; 653():24-38. PubMed ID: 29940152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion.
    Tinikul R; Pitsawong W; Sucharitakul J; Nijvipakul S; Ballou DP; Chaiyen P
    Biochemistry; 2013 Oct; 52(39):6834-43. PubMed ID: 24004065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P
    J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-terminal domain of 4-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii is an autoinhibitory domain.
    Phongsak T; Sucharitakul J; Thotsaporn K; Oonanant W; Yuvaniyama J; Svasti J; Ballou DP; Chaiyen P
    J Biol Chem; 2012 Jul; 287(31):26213-22. PubMed ID: 22661720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the mechanism of p-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa: a system composed of a small flavin reductase and a large flavin-dependent oxygenase.
    Chakraborty S; Ortiz-Maldonado M; Entsch B; Ballou DP
    Biochemistry; 2010 Jan; 49(2):372-85. PubMed ID: 20000468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast solvation dynamics of flavin mononucleotide in the reductase component of p-hydroxyphenylacetate hydroxylase.
    Chosrowjan H; Taniguchi S; Mataga N; Phongsak T; Sucharitakul J; Chaiyen P; Tanaka F
    J Phys Chem B; 2009 Jun; 113(25):8439-42. PubMed ID: 19485384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel two-protein component flavoprotein hydroxylase.
    Chaiyen P; Suadee C; Wilairat P
    Eur J Biochem; 2001 Nov; 268(21):5550-61. PubMed ID: 11683878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli.
    Coves J; Zeghouf M; Macherel D; Guigliarelli B; Asso M; Fontecave M
    Biochemistry; 1997 May; 36(19):5921-8. PubMed ID: 9153434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the Pathways of Dioxygen Through the C2 Component of the Environmentally Relevant Monooxygenase p-Hydroxyphenylacetate Hydroxylase from Acinetobacter baumannii: A Molecular Dynamics Investigation.
    Pietra F
    Chem Biodivers; 2016 Jul; 13(7):954-60. PubMed ID: 27273247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavin reductase P: structure of a dimeric enzyme that reduces flavin.
    Tanner JJ; Lei B; Tu SC; Krause KL
    Biochemistry; 1996 Oct; 35(42):13531-9. PubMed ID: 8885832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxylation of 4-hydroxyphenylethylamine derivatives by R263 variants of the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase.
    Chenprakhon P; Dhammaraj T; Chantiwas R; Chaiyen P
    Arch Biochem Biophys; 2017 Apr; 620():1-11. PubMed ID: 28300536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction mechanism and kinetics of the two-component flavoprotein dimethyl sulfone monooxygenase system: Using hydrogen peroxide for monooxygenation and substrate cleavage.
    Mangkalee M; Oonanant W; Aonbangkhen C; Pimviriyakul P; Tinikul R; Chaiyen P; Insin N; Sucharitakul J
    FEBS J; 2023 Nov; 290(21):5171-5195. PubMed ID: 37522421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms.
    Thotsaporn K; Chenprakhon P; Sucharitakul J; Mattevi A; Chaiyen P
    J Biol Chem; 2011 Aug; 286(32):28170-80. PubMed ID: 21680741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.