BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17595520)

  • 1. Characterisation of inorganic phosphate transport in bovine articular chondrocytes.
    Solomon DH; Wilkins RJ; Meredith D; Browning JA
    Cell Physiol Biochem; 2007; 20(1-4):99-108. PubMed ID: 17595520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inorganic phosphate transport in matrix vesicles from bovine articular cartilage.
    Solomon DH; Browning JA; Wilkins RJ
    Acta Physiol (Oxf); 2007 Jun; 190(2):119-25. PubMed ID: 17516935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of an intestinal phosphate transporter alternative to type IIb sodium-dependent phosphate transporter in rats with chronic kidney disease.
    Ichida Y; Ohtomo S; Yamamoto T; Murao N; Tsuboi Y; Kawabe Y; Segawa H; Horiba N; Miyamoto KI; Floege J
    Nephrol Dial Transplant; 2021 Jan; 36(1):68-75. PubMed ID: 32879980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
    Villa-Bellosta R; Sorribas V
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dexamethasone and cyclic AMP regulate sodium phosphate cotransporter (NaPi-IIb and Pit-1) mRNA and phosphate uptake in rat alveolar type II epithelial cells.
    Jin C; Zoidis E; Ghirlanda C; Schmid C
    Lung; 2010; 188(1):51-61. PubMed ID: 19806400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a Pi transport system in cartilage matrix vesicles. Potential role in the calcification process.
    Montessuit C; Caverzasio J; Bonjour JP
    J Biol Chem; 1991 Sep; 266(27):17791-7. PubMed ID: 1833387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes.
    Cecil DL; Rose DM; Terkeltaub R; Liu-Bryan R
    Arthritis Rheum; 2005 Jan; 52(1):144-54. PubMed ID: 15641067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Odontoblast phosphate and calcium transport in dentinogenesis.
    Lundquist P
    Swed Dent J Suppl; 2002; (154):1-52. PubMed ID: 12240523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho.
    Dërmaku-Sopjani M; Sopjani M; Saxena A; Shojaiefard M; Bogatikov E; Alesutan I; Eichenmüller M; Lang F
    Cell Physiol Biochem; 2011; 28(2):251-8. PubMed ID: 21865732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type II Na+-Pi cotransporters in osteoblast mineral formation: regulation by inorganic phosphate.
    Lundquist P; Murer H; Biber J
    Cell Physiol Biochem; 2007; 19(1-4):43-56. PubMed ID: 17310099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of hydrostatic pressure on cation transport pathways of isolated articular chondrocytes.
    Hall AC
    J Cell Physiol; 1999 Feb; 178(2):197-204. PubMed ID: 10048584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H
    Lacerda-Abreu MA; Russo-Abrahão T; Cosentino-Gomes D; Nascimento MTC; Carvalho-Kelly LF; Gomes T; Rodrigues MF; König S; Rumjanek FD; Monteiro RQ; Meyer-Fernandes JR
    Biochim Biophys Acta Mol Basis Dis; 2019 Sep; 1865(9):2180-2188. PubMed ID: 31034992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins.
    Forster IC; Hernando N; Biber J; Murer H
    Curr Top Membr; 2012; 70():313-56. PubMed ID: 23177991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of inorganic phosphate in primary cultures of chondrocytes isolated from the tibial growth plate of normal adolescent chickens.
    Wu LN; Guo Y; Genge BR; Ishikawa Y; Wuthier RE
    J Cell Biochem; 2002; 86(3):475-89. PubMed ID: 12210754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements.
    Ravera S; Virkki LV; Murer H; Forster IC
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C606-20. PubMed ID: 17494632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of transport mechanisms and determinants critical for Na+-dependent Pi symport of the PiT family paralogs human PiT1 and PiT2.
    Bøttger P; Hede SE; Grunnet M; Høyer B; Klaerke DA; Pedersen L
    Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1377-87. PubMed ID: 16790504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and functional identification of the Na(+)/H(+) exchange isoforms NHE1 and NHE3 in isolated bovine articular chondrocytes.
    Tattersall A; Meredith D; Furla P; Shen MR; Ellory C; Wilkins R
    Cell Physiol Biochem; 2003; 13(4):215-22. PubMed ID: 12876379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa).
    Virkki LV; Forster IC; Biber J; Murer H
    Am J Physiol Renal Physiol; 2005 May; 288(5):F969-81. PubMed ID: 15613617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of H+ transport mechanisms by interleukin-1 in isolated bovine articular chondrocytes.
    Tattersall AL; Browning JA; Wilkins RJ
    Cell Physiol Biochem; 2005; 16(1-3):43-50. PubMed ID: 16121032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximal tubular handling of phosphate: A molecular perspective.
    Forster IC; Hernando N; Biber J; Murer H
    Kidney Int; 2006 Nov; 70(9):1548-59. PubMed ID: 16955105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.