These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17596189)

  • 1. Growth of Acanthamoeba castellanii and Hartmannella vermiformis on live, heat-killed and DTAF-stained bacterial prey.
    Pickup ZL; Pickup R; Parry JD
    FEMS Microbiol Ecol; 2007 Aug; 61(2):264-72. PubMed ID: 17596189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of bacterial prey species and their concentration on growth of the amoebae Acanthamoeba castellanii and Hartmannella vermiformis.
    Pickup ZL; Pickup R; Parry JD
    Appl Environ Microbiol; 2007 Apr; 73(8):2631-4. PubMed ID: 17293529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the growth and starvation responses of Acanthamoeba castellanii and Hartmannella vermiformis in the presence of suspended and attached Escherichia coli K12.
    Pickup ZL; Pickup R; Parry JD
    FEMS Microbiol Ecol; 2007 Mar; 59(3):556-63. PubMed ID: 17059479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth, encystment and survival of Acanthamoeba castellanii grazing on different bacteria.
    de Moraes J; Alfieri SC
    FEMS Microbiol Ecol; 2008 Nov; 66(2):221-9. PubMed ID: 18811648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriolytic activities of the free-living soil amoebae, Acanthamoeba castellanii, Acanthamoeba polyphaga and Hartmannella vermiformis.
    Weekers PH; Engelberts AM; Vogels GD
    Antonie Van Leeuwenhoek; 1995 Oct; 68(3):237-43. PubMed ID: 8572682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Grazing by the Free-Living Soil Amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannella vermiformis on Various Bacteria.
    Weekers PH; Bodelier PL; Wijen JP; Vogels GD
    Appl Environ Microbiol; 1993 Jul; 59(7):2317-9. PubMed ID: 16349000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-living freshwater amoebae differ in their susceptibility to the pathogenic bacterium Legionella pneumophila.
    Dey R; Bodennec J; Mameri MO; Pernin P
    FEMS Microbiol Lett; 2009 Jan; 290(1):10-7. PubMed ID: 19016880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between free living amoebae and Exophiala dermatitidis: a preliminary study.
    Cateau E; Mergey T; Kauffmann-Lacroix C; Rodier MH
    Med Mycol; 2009 Feb; 47(1):115-8. PubMed ID: 19085458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in isoenzyme patterns of axenically and monoxenically grown Acanthamoeba and Hartmannella.
    Weekers PH; De Jonckheere JF
    Antonie Van Leeuwenhoek; 1997 Mar; 71(3):231-7. PubMed ID: 9111916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The filter-feeding ciliates Colpidium striatum and Tetrahymena pyriformis display selective feeding behaviours in the presence of mixed, equally-sized, bacterial prey.
    Thurman J; Parry JD; Hill PJ; Laybourn-Parry J
    Protist; 2010 Oct; 161(4):577-88. PubMed ID: 20471910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein expression by the protozoan Hartmannella vermiformis upon contact with its bacterial parasite Legionella pneumophila.
    abu Kwaik Y; Fields BS; Engleberg NC
    Infect Immun; 1994 May; 62(5):1860-6. PubMed ID: 8168950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of Pseudomonas aeruginosa and Corynebacterium spp. with non-phagocytic brain microvascular endothelial cells and phagocytic Acanthamoeba castellanii.
    Siddiqui R; Lakhundi S; Khan NA
    Parasitol Res; 2015 Jun; 114(6):2349-56. PubMed ID: 25792227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity in chlorine susceptibility for Legionella pneumophila released from Acanthamoeba and Hartmannella.
    Chang CW; Kao CH; Liu YF
    J Appl Microbiol; 2009 Jan; 106(1):97-105. PubMed ID: 19040705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homeostasis of cellular amino acids in Acanthamoeba castellanii exposed to different media under amoeba-bacteria coculture conditions.
    Tsai CM; Chen CH; Cheng WH; Stelma FF; Li SC; Lin WC
    BMC Microbiol; 2023 Jul; 23(1):198. PubMed ID: 37495951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas aeruginosa utilises its type III secretion system to kill the free-living amoeba Acanthamoeba castellanii.
    Abd H; Wretlind B; Saeed A; Idsund E; Hultenby K; Sandström G
    J Eukaryot Microbiol; 2008; 55(3):235-43. PubMed ID: 18460161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants that govern the recognition and uptake of Escherichia coli O157 : H7 by Acanthamoeba castellanii.
    Arnold JW; Spacht D; Koudelka GB
    Cell Microbiol; 2016 Oct; 18(10):1459-70. PubMed ID: 26990156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survey of pathogenic free-living amoebae and Legionella spp. in mud spring recreation area.
    Hsu BM; Lin CL; Shih FC
    Water Res; 2009 Jun; 43(11):2817-28. PubMed ID: 19457534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vermamoeba vermiformis: a Free-Living Amoeba of Interest.
    Delafont V; Rodier MH; Maisonneuve E; Cateau E
    Microb Ecol; 2018 Nov; 76(4):991-1001. PubMed ID: 29737382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excystment of axenically prepared cysts of Hartmanella culbertsoni.
    Kaushal DC; Shukla OP
    J Gen Microbiol; 1977 Jan; 98(1):117-23. PubMed ID: 319194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed cytokinesis generates multinuclearity and potential advantages in the amoeba Acanthamoeba castellanii Neff strain.
    Quinet T; Samba-Louaka A; Héchard Y; Van Doninck K; Van der Henst C
    Sci Rep; 2020 Jul; 10(1):12109. PubMed ID: 32694508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.