These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17596339)

  • 1. The network of sequence flow between protein structures.
    Meyerguz L; Kleinberg J; Elber R
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11627-32. PubMed ID: 17596339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational exploration of the network of sequence flow between protein structures.
    Cao B; Elber R
    Proteins; 2010 Mar; 78(4):985-1003. PubMed ID: 19899165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super folds, networks, and barriers.
    Burke S; Elber R
    Proteins; 2012 Feb; 80(2):463-70. PubMed ID: 22095563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filling-in void and sparse regions in protein sequence space by protein-like artificial sequences enables remarkable enhancement in remote homology detection capability.
    Mudgal R; Sowdhamini R; Chandra N; Srinivasan N; Sandhya S
    J Mol Biol; 2014 Feb; 426(4):962-79. PubMed ID: 24316367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of sequence selection mechanisms.
    Meyerguz L; Grasso C; Kleinberg J; Elber R
    Structure; 2004 Apr; 12(4):547-57. PubMed ID: 15062078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capturing protein sequence-structure specificity using computational sequence design.
    Mach P; Koehl P
    Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of machine learning algorithms to classify binary protein sequences as highly-designable or poorly-designable.
    Peto M; Kloczkowski A; Honavar V; Jernigan RL
    BMC Bioinformatics; 2008 Nov; 9():487. PubMed ID: 19014713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of negative selection in protein evolution revealed through the energetics of the native state ensemble.
    Hoffmann J; Wrabl JO; Hilser VJ
    Proteins; 2016 Apr; 84(4):435-47. PubMed ID: 26800099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein structure determination using metagenome sequence data.
    Ovchinnikov S; Park H; Varghese N; Huang PS; Pavlopoulos GA; Kim DE; Kamisetty H; Kyrpides NC; Baker D
    Science; 2017 Jan; 355(6322):294-298. PubMed ID: 28104891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the sequence fitness landscape of a bridge between protein folds.
    Tian P; Best RB
    PLoS Comput Biol; 2020 Oct; 16(10):e1008285. PubMed ID: 33048928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic interaction networks in the core of protein domains and their native folds.
    Soundararajan V; Raman R; Raguram S; Sasisekharan V; Sasisekharan R
    PLoS One; 2010 Feb; 5(2):e9391. PubMed ID: 20186337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The family feud: do proteins with similar structures fold via the same pathway?
    Zarrine-Afsar A; Larson SM; Davidson AR
    Curr Opin Struct Biol; 2005 Feb; 15(1):42-9. PubMed ID: 15718132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligning sequences to structures.
    McGuffin LJ
    Methods Mol Biol; 2008; 413():61-90. PubMed ID: 18075162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct correlation analysis improves fold recognition.
    Sadowski MI; Maksimiak K; Taylor WR
    Comput Biol Chem; 2011 Oct; 35(5):323-32. PubMed ID: 22000804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepSF: deep convolutional neural network for mapping protein sequences to folds.
    Hou J; Adhikari B; Cheng J
    Bioinformatics; 2018 Apr; 34(8):1295-1303. PubMed ID: 29228193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational protein design: validation and possible relevance as a tool for homology searching and fold recognition.
    Schmidt Am Busch M; Sedano A; Simonson T
    PLoS One; 2010 May; 5(5):e10410. PubMed ID: 20463972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the existing and potential structural space of proteins by large-scale multiple loop permutations.
    Dai L; Zhou Y
    J Mol Biol; 2011 May; 408(3):585-95. PubMed ID: 21376059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A galaxy of folds.
    Alva V; Remmert M; Biegert A; Lupas AN; Söding J
    Protein Sci; 2010 Jan; 19(1):124-30. PubMed ID: 19937658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assigning new GO annotations to protein data bank sequences by combining structure and sequence homology.
    Ponomarenko JV; Bourne PE; Shindyalov IN
    Proteins; 2005 Mar; 58(4):855-65. PubMed ID: 15645518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Representing and comparing protein folds and fold families using three-dimensional shape-density representations.
    Mavridis L; Ghoorah AW; Venkatraman V; Ritchie DW
    Proteins; 2012 Feb; 80(2):530-45. PubMed ID: 22081520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.