These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 17596447)
1. Humans trade off viewing time and movement duration to improve visuomotor accuracy in a fast reaching task. Battaglia PW; Schrater PR J Neurosci; 2007 Jun; 27(26):6984-94. PubMed ID: 17596447 [TBL] [Abstract][Full Text] [Related]
2. No evidence of a lower visual field specialization for visuomotor control. Binsted G; Heath M Exp Brain Res; 2005 Mar; 162(1):89-94. PubMed ID: 15517212 [TBL] [Abstract][Full Text] [Related]
3. Visual information throughout a reach determines endpoint precision. Ma-Wyatt A; McKee SP Exp Brain Res; 2007 May; 179(1):55-64. PubMed ID: 17109109 [TBL] [Abstract][Full Text] [Related]
4. Influence of stimulus color on the control of reaching-grasping movements. Gentilucci M; Benuzzi F; Bertolani L; Gangitano M Exp Brain Res; 2001 Mar; 137(1):36-44. PubMed ID: 11310170 [TBL] [Abstract][Full Text] [Related]
5. Intercepting a moving target: effects of temporal precision constraints and movement amplitude. Tresilian JR; Lonergan A Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574 [TBL] [Abstract][Full Text] [Related]
6. Controlling reaching movements with predictable and unpredictable target motion in 10-year-old children and adults. Daum MM; Huber S; Krist H Exp Brain Res; 2007 Mar; 177(4):483-92. PubMed ID: 17006685 [TBL] [Abstract][Full Text] [Related]
7. When two eyes are better than one in prehension: monocular viewing and end-point variance. Loftus A; Servos P; Goodale MA; Mendarozqueta N; Mon-Williams M Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152 [TBL] [Abstract][Full Text] [Related]
9. Use of visual information in the correction of interceptive actions. Teixeira LA; Chua R; Nagelkerke P; Franks IM Exp Brain Res; 2006 Nov; 175(4):758-63. PubMed ID: 17051375 [TBL] [Abstract][Full Text] [Related]
10. Neural dynamics in monkey parietal reach region reflect context-specific sensorimotor transformations. Gail A; Andersen RA J Neurosci; 2006 Sep; 26(37):9376-84. PubMed ID: 16971521 [TBL] [Abstract][Full Text] [Related]
11. Dissociation between "where" and "how" judgements of one's own motor performance in a video-controlled reaching task. Boy F; Palluel-Germain R; Orliaguet JP; Coello Y Neurosci Lett; 2005 Sep; 386(1):52-7. PubMed ID: 15982810 [TBL] [Abstract][Full Text] [Related]
12. Target selection for visually guided reaching in macaque. Song JH; Takahashi N; McPeek RM J Neurophysiol; 2008 Jan; 99(1):14-24. PubMed ID: 17989239 [TBL] [Abstract][Full Text] [Related]
13. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target. Tresilian JR; Plooy A; Carroll TJ Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437 [TBL] [Abstract][Full Text] [Related]
14. The accuracy of interceptive action in time and space. Tresilian JR Exerc Sport Sci Rev; 2004 Oct; 32(4):167-73. PubMed ID: 15604936 [TBL] [Abstract][Full Text] [Related]
15. Effects of temporal and/or spatial instructions on the speed-accuracy trade-off of pointing movements in children. Rival C; Olivier I; Ceyte H Neurosci Lett; 2003 Jan; 336(1):65-9. PubMed ID: 12493603 [TBL] [Abstract][Full Text] [Related]
16. Pointing to double-step visual stimuli from a standing position: motor corrections when the speed-accuracy trade-off is unexpectedly modified in-flight. A breakdown of the perception-action coupling. Fautrelle L; Barbieri G; Ballay Y; Bonnetblanc F Neuroscience; 2011 Oct; 194():124-35. PubMed ID: 21854835 [TBL] [Abstract][Full Text] [Related]
17. Motor preparation in a memorised delay task. Jordan K; Hyland BI; Wickens JR; Anson JG Exp Brain Res; 2005 Sep; 166(1):102-8. PubMed ID: 16032407 [TBL] [Abstract][Full Text] [Related]
18. Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size. Tresilian JR; Plooy A Exp Brain Res; 2006 Jun; 171(4):421-35. PubMed ID: 16307234 [TBL] [Abstract][Full Text] [Related]
19. Long-term adaptation to prism-induced inversion of the retinal images. Richter H; Magnusson S; Imamura K; Fredrikson M; Okura M; Watanabe Y; Långström B Exp Brain Res; 2002 Jun; 144(4):445-57. PubMed ID: 12037630 [TBL] [Abstract][Full Text] [Related]
20. Coordination in childhood: modifications of visuomotor representations in 6- to 11-year-old children. Ferrel C; Bard C; Fleury M Exp Brain Res; 2001 Jun; 138(3):313-21. PubMed ID: 11460769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]