These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 17596940)
1. Immobilization of mycobacterial cells onto silicone--assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol. Claudino MJ; Soares D; Van Keulen F; Marques MP; Cabral JM; Fernandes P Bioresour Technol; 2008 May; 99(7):2304-11. PubMed ID: 17596940 [TBL] [Abstract][Full Text] [Related]
2. Sitosterol bioconversion with resting cells in liquid polymer based systems. Carvalho F; Marques MP; de Carvalho CC; Cabral JM; Fernandes P Bioresour Technol; 2009 Sep; 100(17):4050-3. PubMed ID: 19362822 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of beta-sitosterol transformation in Mycobacterium vaccae with increased cell wall permeability. Korycka-Machała M; Rumijowska-Galewicz A; Lisowska K; Ziolkowskit A; Sedlacze L Acta Microbiol Pol; 2001; 50(2):107-15. PubMed ID: 11720305 [TBL] [Abstract][Full Text] [Related]
8. β-Sitosterol Bioconversion to Androstenedione in Microtiter Plates. Marques MPC; Fernandes P Methods Mol Biol; 2017; 1645():167-176. PubMed ID: 28710628 [TBL] [Abstract][Full Text] [Related]
9. [Steroid transformation with immobilized microorganisms. III. Degradation of the side chain of cholesterol derivatives with immobilized Mycobaterium phlei and M. smegmatis cells]. Atrat P; Hörhold C; Buchar MJ; Koschtschejenko KA Z Allg Mikrobiol; 1980; 20(4):239-43. PubMed ID: 7424049 [TBL] [Abstract][Full Text] [Related]
10. Transformation of sitosterol to androsta-1, 4-diene-3, 17-dione by immobilized Mycobacterium cells. Roy PK; Khan AW; Basu SK Indian J Biochem Biophys; 1991 Apr; 28(2):150-4. PubMed ID: 1879871 [TBL] [Abstract][Full Text] [Related]
11. [Cleavage of the side chain of sitosterol by R, S and M mycobacteria variants]. Mil'ko ES; Korobova IuN; Gabinskaia KN; Egorov NS Mikrobiologiia; 1982; 51(1):166-8. PubMed ID: 6803108 [TBL] [Abstract][Full Text] [Related]
12. Behaviour of Mycobacterium sp. NRRL B-3805 whole cells in aqueous, organic-aqueous and organic media studied by fluorescence microscopy. De Carvalho CC; Cruz A; Angelova B; Fernandes P; Pons MN; Pinheiro HM; Cabral JM; Da Fonseca MM Appl Microbiol Biotechnol; 2004 Jun; 64(5):695-701. PubMed ID: 14689247 [TBL] [Abstract][Full Text] [Related]
13. Effects of Different Carbon Sources on Growth, Membrane Permeability, β-Sitosterol Consumption, Androstadienedione and Androstenedione Production by Mycobacterium neoaurum. Yin Y Interdiscip Sci; 2016 Mar; 8(1):102-7. PubMed ID: 26298579 [TBL] [Abstract][Full Text] [Related]
14. Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized resting cells. Bouallagui Z; Sayadi S J Agric Food Chem; 2006 Dec; 54(26):9906-11. PubMed ID: 17177519 [TBL] [Abstract][Full Text] [Related]
15. A microwell platform for the scale-up of a multistep bioconversion to bench-scale reactors: sitosterol side-chain cleavage. Marques MP; Cabral JM; Fernandes P Biotechnol J; 2010 Apr; 5(4):402-12. PubMed ID: 20235144 [TBL] [Abstract][Full Text] [Related]
16. Enhanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using cell wall permeabilizing antibiotics. Malaviya A; Gomes J J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1235-9. PubMed ID: 18716814 [TBL] [Abstract][Full Text] [Related]
17. Selection of Mycobacterium sp. strains with capacity to biotransform high concentrations of beta-sitosterol. Vidal M; Becerra J; Mondaca MA; Silva M Appl Microbiol Biotechnol; 2001 Oct; 57(3):385-9. PubMed ID: 11759690 [TBL] [Abstract][Full Text] [Related]
18. Characterization of 24-well microtiter plate reactors for a complex multistep bioconversion: from sitosterol to androstenedione. Marques MP; Magalhães S; Cabral JM; Fernandes P J Biotechnol; 2009 May; 141(3-4):174-80. PubMed ID: 19433223 [TBL] [Abstract][Full Text] [Related]