BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17597065)

  • 1. Role of non-phosphorylated activation loop residues in determining ERK2 dephosphorylation, activity, and subcellular localization.
    Bendetz-Nezer S; Seger R
    J Biol Chem; 2007 Aug; 282(34):25114-22. PubMed ID: 17597065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of the activation loop of ERK in the detachment from cytosolic anchoring.
    Wolf I; Rubinfeld H; Yoon S; Marmor G; Hanoch T; Seger R
    J Biol Chem; 2001 Jul; 276(27):24490-7. PubMed ID: 11328824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activity of the extracellular signal-regulated kinase 2 is regulated by differential phosphorylation in the activation loop.
    Zhou B; Zhang ZY
    J Biol Chem; 2002 Apr; 277(16):13889-99. PubMed ID: 11839761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates.
    Zhang J; Zhou B; Zheng CF; Zhang ZY
    J Biol Chem; 2003 Aug; 278(32):29901-12. PubMed ID: 12754209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered regulation of ERK1b by MEK1 and PTP-SL and modified Elk1 phosphorylation by ERK1b are caused by abrogation of the regulatory C-terminal sequence of ERKs.
    Yung Y; Yao Z; Aebersold DM; Hanoch T; Seger R
    J Biol Chem; 2001 Sep; 276(38):35280-9. PubMed ID: 11463794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a cytoplasmic-retention sequence in ERK2.
    Rubinfeld H; Hanoch T; Seger R
    J Biol Chem; 1999 Oct; 274(43):30349-52. PubMed ID: 10521408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2.
    Eblen ST; Catling AD; Assanah MC; Weber MJ
    Mol Cell Biol; 2001 Jan; 21(1):249-59. PubMed ID: 11113199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking.
    Xu Be ; Stippec S; Robinson FL; Cobb MH
    J Biol Chem; 2001 Jul; 276(28):26509-15. PubMed ID: 11352917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5.
    Mandl M; Slack DN; Keyse SM
    Mol Cell Biol; 2005 Mar; 25(5):1830-45. PubMed ID: 15713638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERK2 shows a restrictive and locally selective mechanism of recognition by its tyrosine phosphatase inactivators not shared by its activator MEK1.
    Tárrega C; Ríos P; Cejudo-Marín R; Blanco-Aparicio C; van den Berk L; Schepens J; Hendriks W; Tabernero L; Pulido R
    J Biol Chem; 2005 Nov; 280(45):37885-94. PubMed ID: 16148006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical phosphorylation of the TNF-alpha receptor, TNF-R1, by p42Mapk/Erk at basic Pro-directed kinase sites.
    Van Linden AA; Cottin V; Frankel SK; Riches DW
    Biochemistry; 2005 May; 44(18):6980-9. PubMed ID: 15865443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of dephosphorylation of extracellular signal-regulated kinase 2 by mitogen-activated protein kinase phosphatase 3.
    Zhao Y; Zhang ZY
    J Biol Chem; 2001 Aug; 276(34):32382-91. PubMed ID: 11432864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of the mitogen-activated protein (MAP) kinase backbone and phosphorylation loop to MEK specificity.
    Robinson MJ; Cheng M; Khokhlatchev A; Ebert D; Ahn N; Guan KL; Stein B; Goldsmith E; Cobb MH
    J Biol Chem; 1996 Nov; 271(47):29734-9. PubMed ID: 8939908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties and regulation of a transiently assembled ERK2.Ets-1 signaling complex.
    Callaway KA; Rainey MA; Riggs AF; Abramczyk O; Dalby KN
    Biochemistry; 2006 Nov; 45(46):13719-33. PubMed ID: 17105191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP.
    Pettiford SM; Herbst R
    Oncogene; 2000 Feb; 19(7):858-69. PubMed ID: 10702794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.
    Vomastek T; Iwanicki MP; Burack WR; Tiwari D; Kumar D; Parsons JT; Weber MJ; Nandicoori VK
    Mol Cell Biol; 2008 Nov; 28(22):6954-66. PubMed ID: 18794356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcriptional ETS2 repressor factor associates with active and inactive Erks through distinct FXF motifs.
    Polychronopoulos S; Verykokakis M; Yazicioglu MN; Sakarellos-Daitsiotis M; Cobb MH; Mavrothalassitis G
    J Biol Chem; 2006 Sep; 281(35):25601-11. PubMed ID: 16799155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases.
    Caunt CJ; Rivers CA; Conway-Campbell BL; Norman MR; McArdle CA
    J Biol Chem; 2008 Mar; 283(10):6241-52. PubMed ID: 18178562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases.
    Zhou B; Wang ZX; Zhao Y; Brautigan DL; Zhang ZY
    J Biol Chem; 2002 Aug; 277(35):31818-25. PubMed ID: 12082107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.