BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 17597117)

  • 1. Enantioseparation using urea- and imide-bearing chitosan phenylcarbamate derivatives as chiral stationary phases for high-performance liquid chromatography.
    Yamamoto C; Fujisawa M; Kamigaito M; Okamoto Y
    Chirality; 2008 Mar; 20(3-4):288-94. PubMed ID: 17597117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of chitosan 3,6-diphenylcarbamate-2-urea derivatives and their applications as chiral stationary phases for high-performance liquid chromatography.
    Zhang L; Shen J; Zuo W; Okamoto Y
    J Chromatogr A; 2014 Oct; 1365():86-93. PubMed ID: 25262030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eluent Tolerance and Enantioseparation Recovery of Chiral Packing Materials Based on Chitosan Bis(Phenylcarbamate)-(n-Octyl Urea)s for High Performance Liquid Chromatography.
    Wang J; Huang SH; Chen W; Bai ZW
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27845761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Enantioseparation Ability of Xylan Bisphenylcarbamate Derivatives as Chiral Stationary Phases in HPLC.
    Li G; Shen J; Li Q; Okamoto Y
    Chirality; 2015 Aug; 27(8):518-22. PubMed ID: 26039871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral stationary phases based on chitosan bis(methylphenylcarbamate)-(isobutyrylamide) for high-performance liquid chromatography.
    Tang S; Bin Q; Chen W; Bai ZW; Huang SH
    J Chromatogr A; 2016 Apr; 1440():112-122. PubMed ID: 26931425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioseparation properties of (1-->6)-alpha-D-glucopyranan and (1-->6)-alpha-D-mannopyranan tris(phenylcarbamate)s as chiral stationary phases in HPLC.
    Kusuno A; Mori M; Satoh T; Miura M; Kaga H; Kakuchi T
    Chirality; 2002 Jun; 14(6):498-502. PubMed ID: 12112345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved preparation of chiral stationary phases via immobilization of polysaccharide derivative-based selectors using diisocyanates.
    Tang S; Liu G; Li X; Jin Z; Wang F; Pan F; Okamoto Y
    J Sep Sci; 2011 Aug; 34(15):1763-71. PubMed ID: 21688393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and chiral recognition of amylose derivatives bearing regioselective phenylcarbamate substituents at 2,6- and 3-positions for high-performance liquid chromatography.
    Shen J; Li G; Yang Z; Okamoto Y
    J Chromatogr A; 2016 Oct; 1467():199-205. PubMed ID: 27452988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preparation and chiral recognition of heterosubstituted amylose derivatives-based chiral stationary phases].
    Wang B; Bao M; Lin S; Ma J; Tang S
    Se Pu; 2017 Jun; 35(6):572-577. PubMed ID: 29048782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and chiral recognition of novel amylose derivatives containing regioselectively benzoate and phenylcarbamate groups.
    Shen J; Ikai T; Okamoto Y
    J Chromatogr A; 2010 Feb; 1217(7):1041-7. PubMed ID: 19647833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral recognition of binaphthyl derivatives: a chiral recognition model on the basis of chromatography, spectroscopy, and molecular mechanistic calculations for the enantioseparation of 1,1'-binaphthyl derivatives on cholic acid-bonded stationary phases.
    Vaton-Chanvrier L; Oulyadi H; Combret Y; Coquerel G; Combret JC
    Chirality; 2001; 13(10):668-74. PubMed ID: 11746799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of substituted phenylcarbamates of N-cyclobutylformylated chitosan and their application as chiral selectors in enantioseparation.
    Zhang J; Wang XC; Chen W; Bai ZW
    Analyst; 2016 Jul; 141(14):4470-80. PubMed ID: 27191623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance chiral stationary phases based on chitosan derivatives with a branched-chain alkyl urea.
    Liang S; Huang SH; Chen W; Bai ZW
    Anal Chim Acta; 2017 Sep; 985():183-193. PubMed ID: 28864189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of chiral stationary phase for HPLC based on immobilization of cellulose 3,5-dimethylphenylcarbamate derivatives on silica gel.
    Kubota T; Yamamoto C; Okamoto Y
    Chirality; 2003 Jan; 15(1):77-82. PubMed ID: 12467047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization and chromatographic evaluation of novel regioselectively substituted amylose-based chiral packing materials for HPLC.
    Shen J; Li P; Liu S; Shen X; Okamoto Y
    Chirality; 2011 Nov; 23(10):878-86. PubMed ID: 21932218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral stationary phases based on chitosan bis(4-methylphenylcarbamate)-(alkoxyformamide).
    Feng ZW; Chen W; Bai ZW
    J Sep Sci; 2016 Oct; 39(19):3728-3735. PubMed ID: 27514503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioseparation using chitosan 2-isopropylthiourea-3,6-dicarbamate derivatives as chiral stationary phases for high-performance liquid chromatography.
    Zhang L; Deng H; Wu X; Gao H; Shen J; Cao H; Qiao Y; Okamoto Y
    J Chromatogr A; 2020 Jul; 1623():461174. PubMed ID: 32505278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization and chiral recognition of 3,5-dimethylphenylcarbamates of cellulose and amylose bearing 4-(trimethoxysilyl)phenylcarbamate groups.
    Tang S; Ikai T; Tsuji M; Okamoto Y
    Chirality; 2010 Jan; 22(1):165-72. PubMed ID: 19455617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance liquid chromatographic enantioseparation using chitin carbamate derivatives as chiral stationary phases.
    Yamamoto C; Hayashi T; Okamoto Y
    J Chromatogr A; 2003 Dec; 1021(1-2):83-91. PubMed ID: 14735977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and HPLC chiral recognition of regioselectively carbamoylated cellulose derivatives.
    Tang S; Li X; Wang F; Liu G; Li Y; Pan F
    Chirality; 2012 Feb; 24(2):167-73. PubMed ID: 22213581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.