These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17597374)

  • 21. [Preparation and in vitro characterization of novel hydrophilic poly(D,L-lactide)/poly (ethylene glycol)-poly (lactide) composite scaffolds].
    Sun R; Pan G; Zhang L; Du J; Xiong C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):91-6. PubMed ID: 17333899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds.
    Taboas JM; Maddox RD; Krebsbach PH; Hollister SJ
    Biomaterials; 2003 Jan; 24(1):181-94. PubMed ID: 12417192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly adjustable biomaterial networks from three-armed biodegradable macromers.
    Loth R; Loth T; Schwabe K; Bernhardt R; Schulz-Siegmund M; Hacker MC
    Acta Biomater; 2015 Oct; 26():82-96. PubMed ID: 26277378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization.
    Felfel RM; Poocza L; Gimeno-Fabra M; Milde T; Hildebrand G; Ahmed I; Scotchford C; Sottile V; Grant DM; Liefeith K
    Biomed Mater; 2016 Feb; 11(1):015011. PubMed ID: 26836023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, characterization, and biocompatibility of novel injectable, biodegradable, and in situ crosslinkable polycarbonate-based macromers.
    Sharifi S; Imani M; Mirzadeh H; Atai M; Ziaee F; Bakhshi R
    J Biomed Mater Res A; 2009 Sep; 90(3):830-43. PubMed ID: 18615464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The release characteristics of a model protein from self-assembled succinimide-terminated poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles.
    Mercado AE; He X; Xu W; Jabbari E
    Nanotechnology; 2008 Aug; 19(32):325609. PubMed ID: 21828822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tough biodegradable mixed-macromer networks and hydrogels by photo-crosslinking in solution.
    Zant E; Grijpma DW
    Acta Biomater; 2016 Feb; 31():80-88. PubMed ID: 26687979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation Behavior of 3D Porous Polydioxanone-b-Polycaprolactone Scaffolds Fabricated Using the Melt-Molding Particulate-Leaching Method.
    Oh SH; Park SC; Kim HK; Koh YJ; Lee JH; Lee MC; Lee JH
    J Biomater Sci Polym Ed; 2011; 22(1-3):225-37. PubMed ID: 20557697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxyapatite scaffolds infiltrated with thermally crosslinked polycaprolactone fumarate and polycaprolactone itaconate.
    Sharifi S; Shafieyan Y; Mirzadeh H; Bagheri-Khoulenjani S; Rabiee SM; Imani M; Atai M; Shokrgozar MA; Hatampoor A
    J Biomed Mater Res A; 2011 Aug; 98(2):257-67. PubMed ID: 21626657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repair of critical size bone defects with porous poly(D,L-lactide)/nacre nanocomposite hollow scaffold.
    Xiao WD; Zhong ZM; Tang YZ; Xu ZX; Xu Z; Chen JT
    Saudi Med J; 2012 Jun; 33(6):601-7. PubMed ID: 22729113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional and highly porous scaffolds for biomedical applications.
    Tyson T; Målberg S; Wåtz V; Finne-Wistrand A; Albertsson AC
    Macromol Biosci; 2011 Oct; 11(10):1432-42. PubMed ID: 21842506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis.
    Numata K; Srivastava RK; Finne-Wistrand A; Albertsson AC; Doi Y; Abe H
    Biomacromolecules; 2007 Oct; 8(10):3115-25. PubMed ID: 17722879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradable porous scaffolds from various L-lactide and trimethylene carbonate copolymers obtained by a simple and effective method.
    Tyson T; Finne-Wistrand A; Albertsson AC
    Biomacromolecules; 2009 Jan; 10(1):149-54. PubMed ID: 19063595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration.
    Plikk P; Målberg S; Albertsson AC
    Biomacromolecules; 2009 May; 10(5):1259-64. PubMed ID: 19331401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering.
    Dargaville BL; Vaquette C; Rasoul F; Cooper-White JJ; Campbell JH; Whittaker AK
    Acta Biomater; 2013 Jun; 9(6):6885-97. PubMed ID: 23416575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold.
    Revati R; Abdul Majid MS; Ridzuan MJM; Normahira M; Mohd Nasir NF; Rahman Y MN; Gibson AG
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():752-759. PubMed ID: 28415525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model.
    Tara S; Kurobe H; Rocco KA; Maxfield MW; Best CA; Yi T; Naito Y; Breuer CK; Shinoka T
    Atherosclerosis; 2014 Dec; 237(2):684-91. PubMed ID: 25463106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.