BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 17599407)

  • 1. Activity- and use-dependent plasticity of the developing corticospinal system.
    Martin JH; Friel KM; Salimi I; Chakrabarty S
    Neurosci Biobehav Rev; 2007; 31(8):1125-35. PubMed ID: 17599407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor Cortex Activity Organizes the Developing Rubrospinal System.
    Williams PT; Martin JH
    J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens.
    Salimi I; Martin JH
    J Neurosci; 2004 May; 24(21):4952-61. PubMed ID: 15163687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilateral activity-dependent interactions in the developing corticospinal system.
    Friel KM; Martin JH
    J Neurosci; 2007 Oct; 27(41):11083-90. PubMed ID: 17928450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal development of differential projections from the caudal and rostral motor cortex subregions.
    Li Q; Martin JH
    Exp Brain Res; 2000 Sep; 134(2):187-98. PubMed ID: 11037285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal development of corticospinal postsynaptic action.
    Meng Z; Martin JH
    J Neurophysiol; 2003 Aug; 90(2):683-92. PubMed ID: 12702708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The corticospinal system: from development to motor control.
    Martin JH
    Neuroscientist; 2005 Apr; 11(2):161-73. PubMed ID: 15746384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development.
    Friel K; Chakrabarty S; Kuo HC; Martin J
    J Neurosci; 2012 Jul; 32(27):9265-76. PubMed ID: 22764234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of sensory-motor cortex activity in postnatal development of corticospinal axon terminals in the cat.
    Friel KM; Martin JH
    J Comp Neurol; 2005 Apr; 485(1):43-56. PubMed ID: 15776437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal development of connectional specificity of corticospinal terminals in the cat.
    Li Q; Martin JH
    J Comp Neurol; 2002 May; 447(1):57-71. PubMed ID: 11967895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity.
    Chakrabarty S; Friel KM; Martin JH
    J Neurophysiol; 2009 Mar; 101(3):1283-93. PubMed ID: 19091920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade.
    Salimi I; Friel KM; Martin JH
    J Neurosci; 2008 Jul; 28(29):7426-34. PubMed ID: 18632946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets.
    Kuang RZ; Kalil K
    J Comp Neurol; 1994 Jun; 344(2):270-82. PubMed ID: 8077461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-dependent competition between developing corticospinal terminations.
    Martin JH; Lee SJ
    Neuroreport; 1999 Aug; 10(11):2277-82. PubMed ID: 10439448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-dependent development of cortical axon terminations in the spinal cord and brain stem.
    Martin JH; Kably B; Hacking A
    Exp Brain Res; 1999 Mar; 125(2):184-99. PubMed ID: 10204771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing activity-dependent plasticity to repair the damaged corticospinal tract in an animal model of cerebral palsy.
    Martin JH; Chakrabarty S; Friel KM
    Dev Med Child Neurol; 2011 Sep; 53 Suppl 4(Suppl 4):9-13. PubMed ID: 21950387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transition from development to motor control function in the corticospinal system.
    Meng Z; Li Q; Martin JH
    J Neurosci; 2004 Jan; 24(3):605-14. PubMed ID: 14736845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skilled Movements in Mice Require Inhibition of Corticospinal Axon Collateral Formation in the Spinal Cord by Semaphorin Signaling.
    Gu Z; Ueno M; Klinefelter K; Mamidi M; Yagi T; Yoshida Y
    J Neurosci; 2019 Nov; 39(45):8885-8899. PubMed ID: 31537704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticospinal system development depends on motor experience.
    Martin JH; Choy M; Pullman S; Meng Z
    J Neurosci; 2004 Mar; 24(9):2122-32. PubMed ID: 14999063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semaphorin-Mediated Corticospinal Axon Elimination Depends on the Activity-Induced Bax/Bak-Caspase Pathway.
    Gu Z; Koppel N; Kalamboglas J; Alexandrou G; Li J; Craig C; Simon DJ; Tessier-Lavigne M; Baccei ML; Martin JH; Yoshida Y
    J Neurosci; 2020 Jul; 40(28):5402-5412. PubMed ID: 32471877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.