BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 17599546)

  • 1. Accumulation and elimination of methylmercury in Atlantic cod (Gadus morhua L.) following dietary exposure.
    Amlund H; Lundebye AK; Berntssen MH
    Aquat Toxicol; 2007 Aug; 83(4):323-30. PubMed ID: 17599546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation and elimination of dietary arsenobetaine in two species of fish, Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.).
    Amlund H; Francesconi KA; Bethune C; Lundebye AK; Berntssen MH
    Environ Toxicol Chem; 2006 Jul; 25(7):1787-94. PubMed ID: 16833139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic properties of saxitoxin in Atlantic salmon (Salmo salar) and Atlantic cod (Gadus morhua).
    Bakke MJ; Horsberg TE
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Nov; 152(4):444-50. PubMed ID: 20656058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy.
    Maramba NP; Reyes JP; Francisco-Rivera AT; Panganiban LC; Dioquino C; Dando N; Timbang R; Akagi H; Castillo MT; Quitoriano C; Afuang M; Matsuyama A; Eguchi T; Fuchigami Y
    J Environ Manage; 2006 Oct; 81(2):135-45. PubMed ID: 16949727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oxidized dietary oil and vitamin E supplementation on lipid profile and oxidation of muscle and liver of juvenile atlantic cod (Gadus morhua).
    Zhong Y; Lall SP; Shahidi F
    J Agric Food Chem; 2007 Jul; 55(15):6379-86. PubMed ID: 17583348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disposition of arsenobetaine in two marine fish species following administration of a single oral dose of [14C]arsenobetaine.
    Amlund H; Ingebrigtsen K; Hylland K; Ruus A; Eriksen DØ; Berntssen MH
    Comp Biochem Physiol C Toxicol Pharmacol; 2006 Jun; 143(2):171-8. PubMed ID: 16545985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury.
    Berg K; Puntervoll P; Valdersnes S; Goksøyr A
    Aquat Toxicol; 2010 Oct; 100(1):51-65. PubMed ID: 20701987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Susceptibility of Atlantic salmon lenses to hydrogen peroxide oxidation ex vivo after being fed diets with vegetable oil and methylmercury.
    Remø SC; Olsvik PA; Torstensen BE; Amlund H; Breck O; Waagbø R
    Exp Eye Res; 2011 May; 92(5):414-24. PubMed ID: 21377462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary selenomethionine influences the accumulation and depuration of dietary methylmercury in zebrafish (Danio rerio).
    Amlund H; Lundebye AK; Boyle D; Ellingsen S
    Aquat Toxicol; 2015 Jan; 158():211-7. PubMed ID: 25481787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary methylmercury alters the proteome in Atlantic salmon (Salmo salar) kidney.
    Nøstbakken OJ; Martin SA; Cash P; Torstensen BE; Amlund H; Olsvik PA
    Aquat Toxicol; 2012 Feb; 108():70-7. PubMed ID: 22265609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fish meal replacement with full-fat soy meal on growth and tissue fatty acid composition in Atlantic cod (Gadus morhua).
    Karalazos V; Treasurer J; Cutts CJ; Alderson R; Galloway TF; Albrektsen S; Arnason J; MacDonald N; Pike I; Bell JG
    J Agric Food Chem; 2007 Jul; 55(14):5788-95. PubMed ID: 17564455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Analysis of total mercury and methylmercury concentrations in four commercially important freshwater fish species obtained from Beijing markets].
    Sun J; Chen CY; Li B; Li YF; Wang JX; Gao YX; Chai ZF
    Wei Sheng Yan Jiu; 2006 Nov; 35(6):722-5. PubMed ID: 17290751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra- and inter-specific variability in total and methylmercury bioaccumulation by eight marine fish species from the Azores.
    Magalhães MC; Costa V; Menezes GM; Pinho MR; Santos RS; Monteiro LR
    Mar Pollut Bull; 2007 Oct; 54(10):1654-62. PubMed ID: 17727898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin-mediated lipid oxidation and compositional characteristics of washed fish mince model systems made from cod (Gadus morhua), herring (Clupea harengus), and salmon (Salmo salar) muscle.
    Larsson K; Almgren A; Undeland I
    J Agric Food Chem; 2007 Oct; 55(22):9027-35. PubMed ID: 17910510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in the Atlantic cod (Gadus morhua) hepatic thiol-proteome after methylmercury exposure.
    Karlsen OA; Sheehan D; Goksøyr A
    J Toxicol Environ Health A; 2014; 77(9-11):650-62. PubMed ID: 24754398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cathepsin D from Atlantic cod (Gadus morhua L.) liver. Isolation and comparative studies.
    Wang PA; Stenvik J; Larsen R; Maehre H; Olsen RL
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jul; 147(3):504-11. PubMed ID: 17428719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer vision-based evaluation of pre- and postrigor changes in size and shape of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar) fillets during rigor mortis and ice storage: effects of perimortem handling stress.
    Misimi E; Erikson U; Digre H; Skavhaug A; Mathiassen JR
    J Food Sci; 2008 Mar; 73(2):E57-68. PubMed ID: 18298727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation and depuration of the synthetic antioxidant ethoxyquin in the muscle of Atlantic salmon (Salmo salar L.).
    Bohne VJ; Lundebye AK; Hamre K
    Food Chem Toxicol; 2008 May; 46(5):1834-43. PubMed ID: 18329775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation and elimination kinetics of dietary endosulfan in Atlantic salmon (Salmo salar).
    Berntssen MH; Glover CN; Robb DH; Jakobsen JV; Petri D
    Aquat Toxicol; 2008 Jan; 86(1):104-11. PubMed ID: 18045704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of alkylphenol metabolites in fish bile by enzymatic treatment and HPLC-fluorescence analysis.
    Jonsson G; Stokke TU; Cavcic A; Jørgensen KB; Beyer J
    Chemosphere; 2008 Apr; 71(7):1392-400. PubMed ID: 18255120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.