BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 17599628)

  • 1. Well-defined polymers with activated ester and protected aldehyde side chains for bio-functionalization.
    Hwang J; Li RC; Maynard HD
    J Control Release; 2007 Oct; 122(3):279-86. PubMed ID: 17599628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of biotinylated aldehyde polymers for biomolecule conjugation.
    Alconcel SN; Kim SH; Tao L; Maynard HD
    Macromol Rapid Commun; 2013 Jun; 34(12):983-9. PubMed ID: 23553922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers.
    Bauri K; Roy SG; Pant S; De P
    Langmuir; 2013 Feb; 29(8):2764-74. PubMed ID: 23346856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First aldehyde-functionalized poly(2-oxazoline)s for chemoselective ligation.
    Taubmann C; Luxenhofer R; Cesana S; Jordan R
    Macromol Biosci; 2005 Jul; 5(7):603-12. PubMed ID: 15997438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled positioning of activated ester moieties on well-defined linear polymer chains.
    Kakuchi R; Zamfir M; Lutz JF; Theato P
    Macromol Rapid Commun; 2012 Jan; 33(1):54-60. PubMed ID: 22121042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and study of controlled release of ibuprofen from the new acrylic type polymers.
    Babazadeh M
    Int J Pharm; 2006 Jun; 316(1-2):68-73. PubMed ID: 16567069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of various glycopolymer architectures via RAFT polymerization: from block copolymers to stars.
    Bernard J; Hao X; Davis TP; Barner-Kowollik C; Stenzel MH
    Biomacromolecules; 2006 Jan; 7(1):232-8. PubMed ID: 16398520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Well-defined lactose-containing polymer grafted onto silica particles.
    Guo TY; Liu P; Zhu JW; Song MD; Zhang BH
    Biomacromolecules; 2006 Apr; 7(4):1196-202. PubMed ID: 16602738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RAFT polymerization: an avenue to functional polymeric micelles for drug delivery.
    Stenzel MH
    Chem Commun (Camb); 2008 Aug; (30):3486-503. PubMed ID: 18654693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible addition-fragmentation chain transfer polymerization of N-isopropylacrylamide: a comparison between a conventional and a fast initiator.
    Bouchékif H; Narain R
    J Phys Chem B; 2007 Sep; 111(38):11120-6. PubMed ID: 17803302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed amino acid ATRP initiators for the synthesis of biohybrid materials.
    Broyer RM; Quaker GM; Maynard HD
    J Am Chem Soc; 2008 Jan; 130(3):1041-7. PubMed ID: 18161975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Side-chain peptide-synthetic polymer conjugates via tandem "ester-amide/thiol-ene" post-polymerization modification of poly(pentafluorophenyl methacrylate) obtained using ATRP.
    Singha NK; Gibson MI; Koiry BP; Danial M; Klok HA
    Biomacromolecules; 2011 Aug; 12(8):2908-13. PubMed ID: 21732702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amine-reactive polymers synthesized by RAFT polymerization using an azlactone functional trithiocarbonate RAFT agent.
    Ho HT; Leroux F; Pascual S; Montembault V; Fontaine L
    Macromol Rapid Commun; 2012 Oct; 33(20):1753-8. PubMed ID: 22786875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotinylated glycopolymers synthesized by atom transfer radical polymerization.
    Vázquez-Dorbatt V; Maynard HD
    Biomacromolecules; 2006 Aug; 7(8):2297-302. PubMed ID: 16903674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Well-defined aminooxy terminated N-(2-hydroxypropyl) methacrylamide macromers for site specific bioconjugation of glycoproteins.
    Dhal PK; Polomoscanik SC; Gianolio DA; Starremans PG; Busch M; Alving K; Chen B; Miller RJ
    Bioconjug Chem; 2013 Jun; 24(6):865-77. PubMed ID: 23631694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of versatile thiol-reactive polymer scaffolds via RAFT polymerization.
    Wong L; Boyer C; Jia Z; Zareie HM; Davis TP; Bulmus V
    Biomacromolecules; 2008 Jul; 9(7):1934-44. PubMed ID: 18564875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-sheet side chain polymers synthesized by atom-transfer radical polymerization.
    Ayres L; Adams PH; Löwik DW; van Hest JC
    Biomacromolecules; 2005; 6(2):825-31. PubMed ID: 15762647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward living radical polymerization.
    Moad G; Rizzardo E; Thang SH
    Acc Chem Res; 2008 Sep; 41(9):1133-42. PubMed ID: 18700787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-fast microwave enhanced reversible addition-fragmentation chain transfer (RAFT) polymerization: monomers to polymers in minutes.
    Brown SL; Rayner CM; Graham S; Cooper A; Rannard S; Perrier S
    Chem Commun (Camb); 2007 Jun; (21):2145-7. PubMed ID: 17520117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of copolymers containing an active ester of methacrylic acid by RAFT: controlled molecular weight scaffolds for biofunctionalization.
    Yanjarappa MJ; Gujraty KV; Joshi A; Saraph A; Kane RS
    Biomacromolecules; 2006 May; 7(5):1665-70. PubMed ID: 16677052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.