BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1760)

  • 1. Cyclic nucleotide metabolism in compensatory renal hypertrophy and neonatal kidney growth.
    Schlondorff D; Weber H
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):524-8. PubMed ID: 1760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for altered cyclic nucleotide metabolism during compensatory renal hypertrophy and neonatal kidney growth.
    Schlondorff D; Weber H
    Yale J Biol Med; 1978; 51(3):387-92. PubMed ID: 32665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cyclic nucleotide metabolism in aorta and heart of neurogenically hypertensive rats: possible trigger mechanism of hypertension.
    Amer MS; Doba N; Reis DJ
    Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2135-9. PubMed ID: 237270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberrations of cyclic nucleotide metabolism in the hearts and vessels of hypertensive rats.
    Amer MS; Gomoll AW; Perhach JL; Ferguson HC; McKinney GR
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4930-4. PubMed ID: 4155074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Changes in cyclic nucleotide metabolism in compensatory adrenal hypertrophy (following unilateral adrenalectomy)].
    Iudaev NA; Afinogenova SA; Zhukova TV
    Probl Endokrinol (Mosk); 1982; 28(6):59-66. PubMed ID: 6130520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin-converting enzyme inhibition prevents myocardial infarction-induced increase in renal cortical cGMP and cAMP phosphodiesterase activities.
    Clauss F; Charloux A; Piquard F; Doutreleau S; Talha S; Zoll J; Lugnier C; Geny B
    Fundam Clin Pharmacol; 2015 Aug; 29(4):352-61. PubMed ID: 25939307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of cyclic adenosine 3':5'-monophosphate and cyclic guanosine 3':5'-monophosphate levels, cyclases, and phosphodiesterases in Morris hepatomas and liver.
    Hickie RA; Thompson WJ; Strada SJ; Couture-Murillo B; Morris HP; Robison GA
    Cancer Res; 1977 Oct; 37(10):3599-606. PubMed ID: 20224
    [No Abstract]   [Full Text] [Related]  

  • 8. Regulation of hepatic nuclear guanylate cyclase.
    Earp HS; Smith P; Huang Ong SH; Steiner AL
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):946-50. PubMed ID: 15262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increases of guanosine 3',5'-monophosphate-related enzymes in kidneys of developing rats.
    Schlondorff D; Trizna W
    Pediatr Res; 1978 Aug; 12(8):882-5. PubMed ID: 28509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic nucleotides and somatomedin action in cartilage.
    Stuart CA; Vesely DL; Provow SA; Furlanetto RW
    Endocrinology; 1982 Aug; 111(2):553-8. PubMed ID: 6124418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of various phosphodiesterase-inhibitors, forskolin, and sodium nitroprusside on porcine detrusor smooth muscle tonic responses to muscarinergic stimulation and cyclic nucleotide levels in vitro.
    Truss MC; Uckert S; Stief CG; Kuczyk M; Schulz-Knappe P; Forssmann WG; Jonas U
    Neurourol Urodyn; 1996; 15(1):59-70. PubMed ID: 8696357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heart cyclic nucleotide responses to sustained aortic constriction in neonatal and adult rats.
    Dowell RT; Haithcoat JL; Thirkill HM; Palmer WK
    Am J Physiol; 1984 Feb; 246(2 Pt 2):H197-206. PubMed ID: 6141742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in renal cyclic nucleotide content as a possible trigger to the initiation of compensatory renal hypertrophy in rats.
    Dicker SE; Greenbaum AL
    J Physiol; 1977 Oct; 271(2):505-14. PubMed ID: 200738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissimilar cyclic nucleotide phosphodiesterase activities in subcellular fractions from normal and SV40-transformed WI-38 fibroblasts.
    Nemecek GM; Butcher RW
    J Cyclic Nucleotide Res; 1979 Dec; 5(6):449-61. PubMed ID: 94064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of β-adrenoceptor-stimulated contractility in early cardiac hypertrophy.
    Perera RK; Sprenger JU; Steinbrecher JH; Hübscher D; Lehnart SE; Abesser M; Schuh K; El-Armouche A; Nikolaev VO
    Circ Res; 2015 Apr; 116(8):1304-11. PubMed ID: 25688144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The cyclic nucleotide system in various sections of the dog myocardium in experimental infarction].
    Frolova NIu; Printsev MD; Tret'iakov AV; Kozhetiakin LA; Korovkin BF
    Vopr Med Khim; 1989; 35(1):64-8. PubMed ID: 2568032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of renal ecto-phosphodiesterase.
    Jackson EK; Ren J; Zacharia LC; Mi Z
    J Pharmacol Exp Ther; 2007 May; 321(2):810-5. PubMed ID: 17308037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nitric oxide on the cyclic guanosine monophosphate (cGMP) pathway during meiosis resumption in bovine oocytes.
    Schwarz KR; Pires PR; Mesquita LG; Chiaratti MR; Leal CL
    Theriogenology; 2014 Mar; 81(4):556-64. PubMed ID: 24331454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The role of the components of the cyclic nucleotide system in N-nitrosodiethylamine-induced hepatic carcinogenesis in rats].
    Antonenko SG; Berdinskikh NK; Mishnaevskaia EG
    Eksp Onkol; 1990; 12(5):18-21. PubMed ID: 2171896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative involvement of cyclic nucleotide phosphodiesterases and adenylyl cyclase on adrenocorticotropin-induced increase of cyclic adenosine monophosphate in rat and human glomerulosa cells.
    Côté M; Payet MD; Rousseau E; Guillon G; Gallo-Payet N
    Endocrinology; 1999 Aug; 140(8):3594-601. PubMed ID: 10433216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.