These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 17600054)

  • 1. The beta-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus.
    Stapleton PD; Shah S; Ehlert K; Hara Y; Taylor PW
    Microbiology (Reading); 2007 Jul; 153(Pt 7):2093-2103. PubMed ID: 17600054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of D-alanyl esterification of Staphylococcus aureus cell wall teichoic acid by the {beta}-lactam resistance modifier (-)-epicatechin gallate.
    Bernal P; Zloh M; Taylor PW
    J Antimicrob Chemother; 2009 Jun; 63(6):1156-62. PubMed ID: 19307172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated beta-lactam resistance by delocalizing PBP2.
    Bernal P; Lemaire S; Pinho MG; Mobashery S; Hinds J; Taylor PW
    J Biol Chem; 2010 Jul; 285(31):24055-65. PubMed ID: 20516078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates.
    Stapleton PD; Shah S; Anderson JC; Hara Y; Hamilton-Miller JM; Taylor PW
    Int J Antimicrob Agents; 2004 May; 23(5):462-7. PubMed ID: 15120724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the β-Lactam Resistance Modifier (-)-Epicatechin Gallate on the Non-Random Distribution of Phospholipids across the Cytoplasmic Membrane of Staphylococcus aureus.
    Rosado H; Turner RD; Foster SJ; Taylor PW
    Int J Mol Sci; 2015 Jul; 16(8):16710-27. PubMed ID: 26213914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of growth of methicillin-resistant and -susceptible Staphylococcus aureus in the presence of beta-lactams on peptidoglycan structure and susceptibility to lytic enzymes.
    Qoronfleh MW; Wilkinson BJ
    Antimicrob Agents Chemother; 1986 Feb; 29(2):250-7. PubMed ID: 2872855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Novel Membrane-Associated Auxiliary Factors AuxA and AuxB Modulate β-lactam Resistance in MRSA by stabilizing Lipoteichoic Acids.
    Mikkelsen K; Sirisarn W; Alharbi O; Alharbi M; Liu H; Nøhr-Meldgaard K; Mayer K; Vestergaard M; Gallagher LA; Derrick JP; McBain AJ; Biboy J; Vollmer W; O'Gara JP; Grunert T; Ingmer H; Xia G
    Int J Antimicrob Agents; 2021 Mar; 57(3):106283. PubMed ID: 33503451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of Tea-Derived Catechin Gallates with Bacterial Pathogens.
    Taylor PW
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease.
    Bæk KT; Gründling A; Mogensen RG; Thøgersen L; Petersen A; Paulander W; Frees D
    Antimicrob Agents Chemother; 2014 Aug; 58(8):4593-603. PubMed ID: 24867990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function.
    Otero LH; Rojas-Altuve A; Llarrull LI; Carrasco-López C; Kumarasiri M; Lastochkin E; Fishovitz J; Dawley M; Hesek D; Lee M; Johnson JW; Fisher JF; Chang M; Mobashery S; Hermoso JA
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16808-13. PubMed ID: 24085846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioridazine induces major changes in global gene expression and cell wall composition in methicillin-resistant Staphylococcus aureus USA300.
    Thorsing M; Klitgaard JK; Atilano ML; Skov MN; Kolmos HJ; Filipe SR; Kallipolitis BH
    PLoS One; 2013; 8(5):e64518. PubMed ID: 23691239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus.
    Campbell J; Singh AK; Santa Maria JP; Kim Y; Brown S; Swoboda JG; Mylonakis E; Wilkinson BJ; Walker S
    ACS Chem Biol; 2011 Jan; 6(1):106-16. PubMed ID: 20961110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: potent inhibition of PBP 2a by two anti-MRSA beta-lactam antibiotics.
    Villegas-Estrada A; Lee M; Hesek D; Vakulenko SB; Mobashery S
    J Am Chem Soc; 2008 Jul; 130(29):9212-3. PubMed ID: 18582062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided design of cell wall biosynthesis inhibitors that overcome β-lactam resistance in Staphylococcus aureus (MRSA).
    Contreras-Martel C; Amoroso A; Woon EC; Zervosen A; Inglis S; Martins A; Verlaine O; Rydzik AM; Job V; Luxen A; Joris B; Schofield CJ; Dessen A
    ACS Chem Biol; 2011 Sep; 6(9):943-51. PubMed ID: 21732689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation for catalysis of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall.
    Fuda C; Hesek D; Lee M; Morio K; Nowak T; Mobashery S
    J Am Chem Soc; 2005 Feb; 127(7):2056-7. PubMed ID: 15713078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of synergy between epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus.
    Zhao WH; Hu ZQ; Okubo S; Hara Y; Shimamura T
    Antimicrob Agents Chemother; 2001 Jun; 45(6):1737-42. PubMed ID: 11353619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A.
    de Jonge BL; Chang YS; Gage D; Tomasz A
    J Biol Chem; 1992 Jun; 267(16):11248-54. PubMed ID: 1597460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic β-lactam resistance modifiers.
    Palacios L; Rosado H; Micol V; Rosato AE; Bernal P; Arroyo R; Grounds H; Anderson JC; Stabler RA; Taylor PW
    PLoS One; 2014; 9(4):e93830. PubMed ID: 24699700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper inhibits peptidoglycan LD-transpeptidases suppressing β-lactam resistance due to bypass of penicillin-binding proteins.
    Peters K; Pazos M; Edoo Z; Hugonnet JE; Martorana AM; Polissi A; VanNieuwenhze MS; Arthur M; Vollmer W
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10786-10791. PubMed ID: 30275297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Penicillin-binding proteins and cell wall composition in beta-lactam-sensitive and -resistant strains of Staphylococcus sciuri.
    Zhou Y; Antignac A; Wu SW; Tomasz A
    J Bacteriol; 2008 Jan; 190(2):508-14. PubMed ID: 18024515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.