These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 17600089)
1. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Egan MJ; Wang ZY; Jones MA; Smirnoff N; Talbot NJ Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11772-7. PubMed ID: 17600089 [TBL] [Abstract][Full Text] [Related]
2. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Ryder LS; Dagdas YF; Mentlak TA; Kershaw MJ; Thornton CR; Schuster M; Chen J; Wang Z; Talbot NJ Proc Natl Acad Sci U S A; 2013 Feb; 110(8):3179-84. PubMed ID: 23382235 [TBL] [Abstract][Full Text] [Related]
3. A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Tucker SL; Thornton CR; Tasker K; Jacob C; Giles G; Egan M; Talbot NJ Plant Cell; 2004 Jun; 16(6):1575-88. PubMed ID: 15155887 [TBL] [Abstract][Full Text] [Related]
4. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Skamnioti P; Gurr SJ Plant Cell; 2007 Aug; 19(8):2674-89. PubMed ID: 17704215 [TBL] [Abstract][Full Text] [Related]
5. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Balhadère PV; Talbot NJ Plant Cell; 2001 Sep; 13(9):1987-2004. PubMed ID: 11549759 [TBL] [Abstract][Full Text] [Related]
6. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Zhang L; Sun C Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550 [TBL] [Abstract][Full Text] [Related]
7. Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Osés-Ruiz M; Sakulkoo W; Littlejohn GR; Martin-Urdiroz M; Talbot NJ Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E237-E244. PubMed ID: 28028232 [TBL] [Abstract][Full Text] [Related]
8. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Fudal I; Collemare J; Böhnert HU; Melayah D; Lebrun MH Eukaryot Cell; 2007 Mar; 6(3):546-54. PubMed ID: 17142568 [TBL] [Abstract][Full Text] [Related]
9. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. Lopez-Moya F; Martin-Urdiroz M; Oses-Ruiz M; Were VM; Fricker MD; Littlejohn G; Lopez-Llorca LV; Talbot NJ New Phytol; 2021 May; 230(4):1578-1593. PubMed ID: 33570748 [TBL] [Abstract][Full Text] [Related]
10. An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Wilson RA; Gibson RP; Quispe CF; Littlechild JA; Talbot NJ Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21902-7. PubMed ID: 21115813 [TBL] [Abstract][Full Text] [Related]
11. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast. Kou Y; Tan YH; Ramanujam R; Naqvi NI New Phytol; 2017 Apr; 214(1):330-342. PubMed ID: 27898176 [TBL] [Abstract][Full Text] [Related]
12. Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea. Chen J; Zheng W; Zheng S; Zhang D; Sang W; Chen X; Li G; Lu G; Wang Z PLoS Pathog; 2008 Nov; 4(11):e1000202. PubMed ID: 19008945 [TBL] [Abstract][Full Text] [Related]
13. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Wang ZY; Jenkinson JM; Holcombe LJ; Soanes DM; Veneault-Fourrey C; Bhambra GK; Talbot NJ Biochem Soc Trans; 2005 Apr; 33(Pt 2):384-8. PubMed ID: 15787612 [TBL] [Abstract][Full Text] [Related]
14. Every Coin Has Two Sides: Reactive Oxygen Species during Rice⁻ Kou Y; Qiu J; Tao Z Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857220 [TBL] [Abstract][Full Text] [Related]
15. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Caracuel-Rios Z; Talbot NJ Curr Opin Microbiol; 2007 Aug; 10(4):339-45. PubMed ID: 17707684 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Kershaw MJ; Talbot NJ Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15967-72. PubMed ID: 19717456 [TBL] [Abstract][Full Text] [Related]
17. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus. Chen XL; Shen M; Yang J; Xing Y; Chen D; Li Z; Zhao W; Zhang Y Mol Plant Pathol; 2017 Feb; 18(2):222-237. PubMed ID: 26950649 [TBL] [Abstract][Full Text] [Related]
18. Alanine: Glyoxylate aminotransferase 1 is required for mobilization and utilization of triglycerides during infection process of the rice blast pathogen, Magnaporthe oryzae. Bhadauria V; Banniza S; Vandenberg A; Selvaraj G; Wei Y Plant Signal Behav; 2012 Sep; 7(9):1206-8. PubMed ID: 22899049 [TBL] [Abstract][Full Text] [Related]
19. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Ahn N; Kim S; Choi W; Im KH; Lee YH Mol Cells; 2004 Feb; 17(1):166-73. PubMed ID: 15055545 [TBL] [Abstract][Full Text] [Related]
20. The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae. Guo M; Guo W; Chen Y; Dong S; Zhang X; Zhang H; Song W; Wang W; Wang Q; Lv R; Zhang Z; Wang Y; Zheng X Mol Plant Microbe Interact; 2010 Aug; 23(8):1053-68. PubMed ID: 20615116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]