These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 17600089)
21. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. Fernandez J; Wilson RA PLoS One; 2014; 9(1):e87300. PubMed ID: 24475267 [TBL] [Abstract][Full Text] [Related]
22. Infection-related development in the rice blast fungus Magnaporthe grisea. Hamer JE; Talbot NJ Curr Opin Microbiol; 1998 Dec; 1(6):693-7. PubMed ID: 10066544 [TBL] [Abstract][Full Text] [Related]
23. A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Ryder LS; Dagdas YF; Kershaw MJ; Venkataraman C; Madzvamuse A; Yan X; Cruz-Mireles N; Soanes DM; Oses-Ruiz M; Styles V; Sklenar J; Menke FLH; Talbot NJ Nature; 2019 Oct; 574(7778):423-427. PubMed ID: 31597961 [TBL] [Abstract][Full Text] [Related]
24. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000 [TBL] [Abstract][Full Text] [Related]
25. An S-(hydroxymethyl)glutathione dehydrogenase is involved in conidiation and full virulence in the rice blast fungus Magnaporthe oryzae. Zhang Z; Wang J; Chai R; Qiu H; Jiang H; Mao X; Wang Y; Liu F; Sun G PLoS One; 2015; 10(3):e0120627. PubMed ID: 25793615 [TBL] [Abstract][Full Text] [Related]
26. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Park JY; Jin J; Lee YW; Kang S; Lee YH Plant Physiol; 2009 Jan; 149(1):474-86. PubMed ID: 18987215 [TBL] [Abstract][Full Text] [Related]
27. Suppression of plant-generated reactive oxygen species is required for successful infection by the rice blast fungus. Huang K; Czymmek KJ; Caplan JL; Sweigard JA; Donofrio NM Virulence; 2011; 2(6):559-62. PubMed ID: 21971181 [TBL] [Abstract][Full Text] [Related]
28. A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae. Guo M; Tan L; Nie X; Zhang Z Virulence; 2017 Oct; 8(7):1335-1354. PubMed ID: 28448785 [TBL] [Abstract][Full Text] [Related]
29. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326 [TBL] [Abstract][Full Text] [Related]
30. MoGrr1, a novel F-box protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae. Guo M; Gao F; Zhu X; Nie X; Pan Y; Gao Z Appl Microbiol Biotechnol; 2015 Oct; 99(19):8075-88. PubMed ID: 26227409 [TBL] [Abstract][Full Text] [Related]
31. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. Kim S; Park SY; Kim KS; Rho HS; Chi MH; Choi J; Park J; Kong S; Park J; Goh J; Lee YH PLoS Genet; 2009 Dec; 5(12):e1000757. PubMed ID: 19997500 [TBL] [Abstract][Full Text] [Related]
32. A novel role for catalase B in the maintenance of fungal cell-wall integrity during host invasion in the rice blast fungus Magnaporthe grisea. Skamnioti P; Henderson C; Zhang Z; Robinson Z; Gurr SJ Mol Plant Microbe Interact; 2007 May; 20(5):568-80. PubMed ID: 17506334 [TBL] [Abstract][Full Text] [Related]
33. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Martin-Urdiroz M; Oses-Ruiz M; Ryder LS; Talbot NJ Fungal Genet Biol; 2016 May; 90():61-68. PubMed ID: 26703899 [TBL] [Abstract][Full Text] [Related]
34. Metabolomics Analysis Identifies Sphingolipids as Key Signaling Moieties in Appressorium Morphogenesis and Function in Magnaporthe oryzae. Liu XH; Liang S; Wei YY; Zhu XM; Li L; Liu PP; Zheng QX; Zhou HN; Zhang Y; Mao LJ; Fernandes CM; Del Poeta M; Naqvi NI; Lin FC mBio; 2019 Aug; 10(4):. PubMed ID: 31431550 [TBL] [Abstract][Full Text] [Related]
35. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. He M; Xu Y; Chen J; Luo Y; Lv Y; Su J; Kershaw MJ; Li W; Wang J; Yin J; Zhu X; Liu X; Chern M; Ma B; Wang J; Qin P; Chen W; Wang Y; Wang W; Ren Z; Wu X; Li P; Li S; Peng Y; Lin F; Talbot NJ; Chen X Autophagy; 2018; 14(9):1543-1561. PubMed ID: 29929416 [TBL] [Abstract][Full Text] [Related]
36. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Zhao X; Kim Y; Park G; Xu JR Plant Cell; 2005 Apr; 17(4):1317-29. PubMed ID: 15749760 [TBL] [Abstract][Full Text] [Related]
37. Deng S; Sun W; Dong L; Cui G; Deng YZ mSphere; 2019 Sep; 4(5):. PubMed ID: 31484736 [No Abstract] [Full Text] [Related]
38. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Liu XH; Lu JP; Zhang L; Dong B; Min H; Lin FC Eukaryot Cell; 2007 Jun; 6(6):997-1005. PubMed ID: 17416896 [TBL] [Abstract][Full Text] [Related]
39. [Progress on avirulence genes of the rice blast fungus Magnaporthe grisea]. Zhang Z; Jiang H; Wang YL; Sun GC Yi Chuan; 2011 Jun; 33(6):591-600. PubMed ID: 21684864 [TBL] [Abstract][Full Text] [Related]
40. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Bhambra GK; Wang ZY; Soanes DM; Wakley GE; Talbot NJ Mol Microbiol; 2006 Jul; 61(1):46-60. PubMed ID: 16824094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]