BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17600221)

  • 41. Tonicity-regulated gene expression.
    Ferraris JD; Burg MB
    Methods Enzymol; 2007; 428():279-96. PubMed ID: 17875424
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of the osmosensitive transcription factor NFAT5 in corneal edema resorption after injury.
    Hadrian K; Musial G; Schönberg A; Georgiev T; Küper C; Bock F; Jantsch J; Cursiefen C; Eming SA; Hos D
    Exp Mol Med; 2023 Mar; 55(3):565-573. PubMed ID: 36869067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression.
    López-Rodríguez C; Antos CL; Shelton JM; Richardson JA; Lin F; Novobrantseva TI; Bronson RT; Igarashi P; Rao A; Olson EN
    Proc Natl Acad Sci U S A; 2004 Feb; 101(8):2392-7. PubMed ID: 14983020
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective suppressions of human CYP3A forms, CYP3A5 and CYP3A7, by troglitazone in HepG2 cells.
    Ogino M; Nagata K; Yamazoe Y
    Drug Metab Pharmacokinet; 2002; 17(1):42-6. PubMed ID: 15618651
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5?
    Zhou X
    World J Nephrol; 2016 Jan; 5(1):20-32. PubMed ID: 26788461
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53.
    Goldstein I; Rivlin N; Shoshana OY; Ezra O; Madar S; Goldfinger N; Rotter V
    Carcinogenesis; 2013 Jan; 34(1):190-8. PubMed ID: 23054612
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Peptide affinity analysis of proteins that bind to an unstructured region containing the transactivating domain of the osmoprotective transcription factor NFAT5.
    Dumond JF; Zhang X; Izumi Y; Ramkissoon K; Wang G; Gucek M; Wang X; Burg MB; Ferraris JD
    Physiol Genomics; 2016 Nov; 48(11):835-849. PubMed ID: 27764768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cis- and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity.
    Miyakawa H; Woo SK; Chen CP; Dahl SC; Handler JS; Kwon HM
    Am J Physiol; 1998 Apr; 274(4):F753-61. PubMed ID: 9575900
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNA-Seq analysis of high NaCl-induced gene expression.
    Izumi Y; Yang W; Zhu J; Burg MB; Ferraris JD
    Physiol Genomics; 2015 Oct; 47(10):500-13. PubMed ID: 26220925
    [TBL] [Abstract][Full Text] [Related]  

  • 50. VARIATIONS IN THE TONICITY OF THE ABDOMINAL MUSCULATURE AND THEIR SIGNIFICANCE.
    Lohse JL
    Cal State J Med; 1912 Mar; 10(3):113-6. PubMed ID: 18735498
    [No Abstract]   [Full Text] [Related]  

  • 51. The Function of Tonicity in Human Isohemagglutination.
    Gay FP
    J Med Res; 1907 Dec; 17(3):321-39. PubMed ID: 19971802
    [No Abstract]   [Full Text] [Related]  

  • 52. Antisense oligonucleotide development for the selective modulation of CYP3A5 in renal disease.
    Lidberg KA; Annalora AJ; Jozic M; Elson DJ; Wang L; Bammler TK; Ramm S; Monteiro MB; Himmelfarb J; Marcus CB; Iversen PL; Kelly EJ
    Sci Rep; 2021 Feb; 11(1):4722. PubMed ID: 33633318
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of dietary sodium content on the pharmacokinetics and pharmacodynamics of fimasartan.
    Gu N; Cho JY; Shin KH; Jang IJ; Rhee MY
    Drug Des Devel Ther; 2016; 10():1525-31. PubMed ID: 27143858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring the relationship between lifestyles, diets and genetic adaptations in humans.
    Valente C; Alvarez L; Marks SJ; Lopez-Parra AM; Parson W; Oosthuizen O; Oosthuizen E; Amorim A; Capelli C; Arroyo-Pardo E; Gusmão L; Prata MJ
    BMC Genet; 2015 May; 16():55. PubMed ID: 26018448
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NFAT5 in cellular adaptation to hypertonic stress - regulations and functional significance.
    Cheung CY; Ko BC
    J Mol Signal; 2013 Apr; 8(1):5. PubMed ID: 23618372
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NFAT5-dependent expression of AQP4 in astrocytes.
    Yi MH; Lee YS; Kang JW; Kim SJ; Oh SH; Kim YM; Lee YH; Lee SD; Kim DW
    Cell Mol Neurobiol; 2013 Mar; 33(2):223-32. PubMed ID: 23180003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Top Three Pharmacogenomics and Personalized Medicine Applications at the Nexus of Renal Pathophysiology and Cardiovascular Medicine.
    Bochud M; Burnier M; Guessous I
    Curr Pharmacogenomics Person Med; 2011 Dec; 9(4):299-322. PubMed ID: 23049672
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of hyperosmotic stress in inflammation and disease.
    Brocker C; Thompson DC; Vasiliou V
    Biomol Concepts; 2012 Aug; 3(4):345-364. PubMed ID: 22977648
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of NFAT5 in inflammatory disorders associated with osmotic stress.
    Neuhofer W
    Curr Genomics; 2010 Dec; 11(8):584-90. PubMed ID: 21629436
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Update information on drug metabolism systems--2009, part II: summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters.
    Rendic S; Guengerich FP
    Curr Drug Metab; 2010 Jan; 11(1):4-84. PubMed ID: 20302566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.