These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 17600320)
1. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies. Cushnie EK; Khan YM; Laurencin CT J Biomed Mater Res A; 2008 Jan; 84(1):54-62. PubMed ID: 17600320 [TBL] [Abstract][Full Text] [Related]
2. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074 [TBL] [Abstract][Full Text] [Related]
3. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related]
4. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
6. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering. Jabbarzadeh E; Jiang T; Deng M; Nair LS; Khan YM; Laurencin CT Biotechnol Bioeng; 2007 Dec; 98(5):1094-102. PubMed ID: 17497742 [TBL] [Abstract][Full Text] [Related]
7. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Jiang T; Nukavarapu SP; Deng M; Jabbarzadeh E; Kofron MD; Doty SB; Abdel-Fattah WI; Laurencin CT Acta Biomater; 2010 Sep; 6(9):3457-70. PubMed ID: 20307694 [TBL] [Abstract][Full Text] [Related]
8. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575 [TBL] [Abstract][Full Text] [Related]
9. Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds. Cushnie EK; Khan YM; Laurencin CT J Biomed Mater Res A; 2010 Aug; 94(2):568-75. PubMed ID: 20198692 [TBL] [Abstract][Full Text] [Related]
10. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
11. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds. Jack KS; Velayudhan S; Luckman P; Trau M; Grøndahl L; Cooper-White J Acta Biomater; 2009 Sep; 5(7):2657-67. PubMed ID: 19375396 [TBL] [Abstract][Full Text] [Related]
12. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Zhao J; Xiao S; Lu X; Wang J; Weng J Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Kong L; Gao Y; Cao W; Gong Y; Zhao N; Zhang X J Biomed Mater Res A; 2005 Nov; 75(2):275-82. PubMed ID: 16044404 [TBL] [Abstract][Full Text] [Related]
14. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV; Thomas V; Johnson KT; Dean DR; Nyairo E Acta Biomater; 2009 Jan; 5(1):305-15. PubMed ID: 18778977 [TBL] [Abstract][Full Text] [Related]
16. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Kim HW; Knowles JC; Kim HE J Biomed Mater Res A; 2005 Feb; 72(2):136-45. PubMed ID: 15549783 [TBL] [Abstract][Full Text] [Related]
17. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
18. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849 [TBL] [Abstract][Full Text] [Related]
19. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
20. The influence of hydroxyapatite particles on in vitro degradation behavior of poly epsilon-caprolactone-based composite scaffolds. Guarino V; Taddei P; Di Foggia M; Fagnano C; Ciapetti G; Ambrosio L Tissue Eng Part A; 2009 Nov; 15(11):3655-68. PubMed ID: 19496680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]