These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17600737)

  • 81. The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell.
    De Buck S; Podevin N; Nolf J; Jacobs A; Depicker A
    Plant J; 2009 Oct; 60(1):134-45. PubMed ID: 19508426
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Isolation of embryo-specific mutants in Arabidopsis: plant transformation.
    Liu NY; Zhang ZF; Yang WC
    Methods Mol Biol; 2008; 427():91-100. PubMed ID: 18369999
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions.
    Kim SI; Veena ; Gelvin SB
    Plant J; 2007 Sep; 51(5):779-91. PubMed ID: 17605756
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Thyrostroma carpophilum insertional mutagenesis: A step towards understanding its pathogenicity mechanism.
    Rasool RS; Padder BA; Wani AA; Shah MD; Masoodi KZ; Khan NA; Banoo A; Khan I
    J Microbiol Methods; 2020 Apr; 171():105885. PubMed ID: 32147575
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Promoter trapping in Magnaporthe grisea.
    Liu XH; Lu JP; Wang JY; Min H; Lin FC
    J Zhejiang Univ Sci B; 2006 Jan; 7(1):28-33. PubMed ID: 16365922
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Mutagenesis via insertional- or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi.
    Maier FJ; Schäfer W
    Biol Chem; 1999; 380(7-8):855-64. PubMed ID: 10494834
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Bidirectional-genetics platform, a dual-purpose mutagenesis strategy for filamentous fungi.
    Park J; Lee YH
    Eukaryot Cell; 2013 Nov; 12(11):1547-53. PubMed ID: 24058171
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Three decades of fungal transformation: key concepts and applications.
    Olmedo-Monfil V; Cortés-Penagos C; Herrera-Estrella A
    Methods Mol Biol; 2004; 267():297-313. PubMed ID: 15269433
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Formation of arthroconidia during regeneration and selection of transformed Epichloë festucae protoplasts.
    Cartwright GM; Tanaka A; Eaton CJ; Scott B
    Fungal Biol; 2014; 118(5-6):462-71. PubMed ID: 24863475
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Identifying pathogenicity-related genes in the pathogen
    Guo Z; Wu H; Peng B; Kang B; Liu L; Luo C; Gu Q
    Front Microbiol; 2023; 14():1220116. PubMed ID: 37547676
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A silver bullet in a golden age of functional genomics: the impact of
    Idnurm A; Bailey AM; Cairns TC; Elliott CE; Foster GD; Ianiri G; Jeon J
    Fungal Biol Biotechnol; 2017; 4():6. PubMed ID: 28955474
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Characterization of regulatory genes
    Wei Y; Qi FN; Xu YR; Zhang KQ; Xu J; Cao YR; Liang LM
    Front Microbiol; 2024; 15():1352989. PubMed ID: 38435693
    [No Abstract]   [Full Text] [Related]  

  • 93. Random insertional-deletional strand exchange mutagenesis (RAISE): a simple method for generating random insertion and deletion mutations.
    Fujii R; Kitaoka M; Hayashi K
    Methods Mol Biol; 2014; 1179():151-8. PubMed ID: 25055776
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Development of a novel strategy for fungal transformation based on a mutant locus conferring carboxin-resistance in Magnaporthe oryzae.
    Guo M; Zhu X; Li H; Tan L; Pan Y
    AMB Express; 2016 Dec; 6(1):57. PubMed ID: 27558019
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A rapid protocol for the introduction of large, multiple oligonucleotide-mediated insertions.
    Warrilow D; Takayama Y; Symonds G
    Biotechniques; 1992 Jul; 13(1):42-5. PubMed ID: 1503772
    [No Abstract]   [Full Text] [Related]  

  • 96. Protoplast cell death assay to study Magnaporthe oryzae AVR gene function in rice.
    Kanzaki H; Yoshida K; Saitoh H; Tamiru M; Terauchi R
    Methods Mol Biol; 2014; 1127():269-75. PubMed ID: 24643567
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery.
    Ribot C; Césari S; Abidi I; Chalvon V; Bournaud C; Vallet J; Lebrun MH; Morel JB; Kroj T
    Plant J; 2013 Apr; 74(1):1-12. PubMed ID: 23279638
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Large-scale insertional mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-mediated transformation.
    Chen XL; Yang J; Peng YL
    Methods Mol Biol; 2011; 722():213-24. PubMed ID: 21590424
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A gap-free genome assembly of Chlamydomonas reinhardtii and detection of translocations induced by CRISPR-mediated mutagenesis.
    Payne ZL; Penny GM; Turner TN; Dutcher SK
    Plant Commun; 2023 Mar; 4(2):100493. PubMed ID: 36397679
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Clathrin Is Important for Virulence Factors Delivery in the Necrotrophic Fungus
    Souibgui E; Bruel C; Choquer M; de Vallée A; Dieryckx C; Dupuy JW; Latorse MP; Rascle C; Poussereau N
    Front Plant Sci; 2021; 12():668937. PubMed ID: 34220891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.