BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 17601347)

  • 1. Electroporator with automatic change of electric field direction improves gene electrotransfer in-vitro.
    Rebersek M; Faurie C; Kanduser M; Corović S; Teissié J; Rols MP; Miklavcic D
    Biomed Eng Online; 2007 Jul; 6():25. PubMed ID: 17601347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changing electrode orientation, but not pulse polarity, increases the efficacy of gene electrotransfer to tumors in vivo.
    Todorovic V; Kamensek U; Sersa G; Cemazar M
    Bioelectrochemistry; 2014 Dec; 100():119-27. PubMed ID: 24411306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real time electroporation control for accurate and safe in vivo non-viral gene therapy.
    Cukjati D; Batiuskaite D; André F; Miklavcic D; Mir LM
    Bioelectrochemistry; 2007 May; 70(2):501-7. PubMed ID: 17258942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing the direction and orientation of electric field during electric pulses application improves plasmid gene transfer in vitro.
    Pavlin M; Haberl SA; Rebersek M; Miklavcic D; Kanduser M
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21931297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future.
    Mir LM
    Mol Biotechnol; 2009 Oct; 43(2):167-76. PubMed ID: 19562526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of in vitro electropermeabilization equivalent pulse protocols.
    Ongaro A; Pellati A; Caruso A; Battista M; De Terlizzi F; De Mattei M; Fini M
    Technol Cancer Res Treat; 2011 Oct; 10(5):465-73. PubMed ID: 21895031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level.
    Haberl S; Kandušer M; Flisar K; Hodžić D; Bregar VB; Miklavčič D; Escoffre JM; Rols MP; Pavlin M
    J Gene Med; 2013 May; 15(5):169-81. PubMed ID: 23564663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation and experimental demonstration of the electric field assisted electroporation microchip for in vitro gene delivery enhancement.
    Lin YC; Li M; Wu CC
    Lab Chip; 2004 Apr; 4(2):104-8. PubMed ID: 15052348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study of gene electrotransfer efficiency based on electroporation volume and electrophoretic movement of plasmid DNA.
    Forjanič T; Miklavčič D
    Biomed Eng Online; 2018 Jun; 17(1):80. PubMed ID: 29914508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene electrotransfer into murine skeletal muscle: a systematic analysis of parameters for long-term gene expression.
    Tevz G; Pavlin D; Kamensek U; Kranjc S; Mesojednik S; Coer A; Sersa G; Cemazar M
    Technol Cancer Res Treat; 2008 Apr; 7(2):91-101. PubMed ID: 18345697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms involved in gene electrotransfer using high- and low-voltage pulses--an in vitro study.
    Kanduser M; Miklavcic D; Pavlin M
    Bioelectrochemistry; 2009 Feb; 74(2):265-71. PubMed ID: 18930698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA electrotransfer: its principles and an updated review of its therapeutic applications.
    André F; Mir LM
    Gene Ther; 2004 Oct; 11 Suppl 1():S33-42. PubMed ID: 15454955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroporation-based gene therapy: recent evolution in the mechanism description and technology developments.
    Mir LM
    Methods Mol Biol; 2014; 1121():3-23. PubMed ID: 24510808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Mg ions on efficiency of gene electrotransfer and on cell electropermeabilization.
    Haberl S; Miklavcic D; Pavlin M
    Bioelectrochemistry; 2010 Oct; 79(2):265-71. PubMed ID: 20580903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microsystem for transfection of exogenous molecules with spatio-temporal control into adherent cells.
    Jain T; Muthuswamy J
    Biosens Bioelectron; 2007 Jan; 22(6):863-70. PubMed ID: 16635569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock waves associated with electric pulses affect cell electro-permeabilization.
    Wasungu L; Pillet F; Bellard E; Rols MP; Teissié J
    Bioelectrochemistry; 2014 Dec; 100():36-43. PubMed ID: 25027311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo DNA electrotransfer.
    Trezise AE
    DNA Cell Biol; 2002 Dec; 21(12):869-77. PubMed ID: 12573047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation.
    Glahder J; Norrild B; Persson MB; Persson BR
    Biotechnol Bioeng; 2005 Nov; 92(3):267-76. PubMed ID: 16161165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells.
    Faurie C; Phez E; Golzio M; Vossen C; Lesbordes JC; Delteil C; Teissié J; Rols MP
    Biochim Biophys Acta; 2004 Oct; 1665(1-2):92-100. PubMed ID: 15471575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer.
    Bureau MF; Gehl J; Deleuze V; Mir LM; Scherman D
    Biochim Biophys Acta; 2000 May; 1474(3):353-9. PubMed ID: 10779687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.