BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 17601488)

  • 1. A CLC chloride channel plays an essential role in copper homeostasis in Aspergillus nidulans at increased extracellular copper concentrations.
    Oddon DM; Diatloff E; Roberts SK
    Biochim Biophys Acta; 2007 Oct; 1768(10):2466-77. PubMed ID: 17601488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CLC-type chloride channel gene is required for laccase activity and virulence in Cryptococcus neoformans.
    Zhu X; Williamson PR
    Mol Microbiol; 2003 Nov; 50(4):1271-81. PubMed ID: 14622414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride channel-dependent copper acquisition of laccase in the basidiomycetous fungus Cryptococcus neoformans.
    Zhu C; Jiang N; Xiao D; Pan J; Zhu X
    Sci China Life Sci; 2010 Jan; 53(1):125-130. PubMed ID: 20596964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of copper homeostasis by Cuf1 associates with its subcellular localization in the pathogenic yeast Cryptococcus neoformans H99.
    Jiang N; Liu X; Yang J; Li Z; Pan J; Zhu X
    FEMS Yeast Res; 2011 Aug; 11(5):440-8. PubMed ID: 21489137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning of CLC chloride channels in Oreochromis mossambicus and their functional complementation of yeast CLC gene mutant.
    Miyazaki H; Uchida S; Takei Y; Hirano T; Marumo F; Sasaki S
    Biochem Biophys Res Commun; 1999 Feb; 255(1):175-81. PubMed ID: 10082675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast CLC protein counteracts vesicular acidification during iron starvation.
    Braun NA; Morgan B; Dick TP; Schwappach B
    J Cell Sci; 2010 Jul; 123(Pt 13):2342-50. PubMed ID: 20530571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast frataxin mutants display decreased superoxide dismutase activity crucial to promote protein oxidative damage.
    Irazusta V; Obis E; Moreno-CermeƱo A; Cabiscol E; Ros J; Tamarit J
    Free Radic Biol Med; 2010 Feb; 48(3):411-20. PubMed ID: 19932164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The yeast CLC chloride channel functions in cation homeostasis.
    Gaxiola RA; Yuan DS; Klausner RD; Fink GR
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):4046-50. PubMed ID: 9520490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptococcus neoformans Ca(2+) homeostasis requires a chloride channel/antiporter Clc1 in JEC21, but not in H99.
    Li D; Zhang X; Li Z; Yang J; Pan J; Zhu X
    FEMS Yeast Res; 2012 Feb; 12(1):69-77. PubMed ID: 22093100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Gef1 protein of Saccharomyces cerevisiae is associated with chloride channel activity.
    Flis K; Bednarczyk P; Hordejuk R; Szewczyk A; Berest V; Dolowy K; Edelman A; Kurlandzka A
    Biochem Biophys Res Commun; 2002 Jun; 294(5):1144-50. PubMed ID: 12074596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and characterisation of SaCLCa1, a novel protein of the chloride channel (CLC) family from the halophyte Suaeda altissima (L.) Pall.
    Nedelyaeva OI; Shuvalov AV; Karpichev IV; Beliaev DV; Myasoedov NA; Khalilova LA; Khramov DE; Popova LG; Balnokin YV
    J Plant Physiol; 2019 Sep; 240():152995. PubMed ID: 31252320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of AnBEST1, a functional anion channel in the plasma membrane of the filamentous fungus, Aspergillus nidulans.
    Roberts SK; Milnes J; Caddick M
    Fungal Genet Biol; 2011 Sep; 48(9):928-38. PubMed ID: 21596151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloride Channel Family in the Euhalophyte
    Nedelyaeva OI; Popova LG; Khramov DE; Volkov VS; Balnokin YV
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels.
    Davis-Kaplan SR; Askwith CC; Bengtzen AC; Radisky D; Kaplan J
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13641-5. PubMed ID: 9811853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.).
    Nakamura A; Fukuda A; Sakai S; Tanaka Y
    Plant Cell Physiol; 2006 Jan; 47(1):32-42. PubMed ID: 16249326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron starvation leads to increased expression of Cu/Zn-superoxide dismutase in Aspergillus.
    Oberegger H; Zadra I; Schoeser M; Haas H
    FEBS Lett; 2000 Nov; 485(2-3):113-6. PubMed ID: 11094151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.
    Alesso CA; Discola KF; Monteiro G
    Fungal Genet Biol; 2015 Sep; 82():43-50. PubMed ID: 26127016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The functioning of mammalian ClC-2 chloride channel in Saccharomyces cerevisiae cells requires an increased level of Kha1p.
    Flis K; Hinzpeter A; Edelman A; Kurlandzka A
    Biochem J; 2005 Sep; 390(Pt 3):655-64. PubMed ID: 15926887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C.
    Haas H; Schoeser M; Lesuisse E; Ernst JF; Parson W; Abt B; Winkelmann G; Oberegger H
    Biochem J; 2003 Apr; 371(Pt 2):505-13. PubMed ID: 12487628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plants contain two SCO proteins that are differentially involved in cytochrome c oxidase function and copper and redox homeostasis.
    Attallah CV; Welchen E; Martin AP; Spinelli SV; Bonnard G; Palatnik JF; Gonzalez DH
    J Exp Bot; 2011 Aug; 62(12):4281-94. PubMed ID: 21543521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.