These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 17601695)
21. Quantitative PCR based expression analysis on a nanoliter scale using polymer nano-well chips. Dahl A; Sultan M; Jung A; Schwartz R; Lange M; Steinwand M; Livak KJ; Lehrach H; Nyarsik L Biomed Microdevices; 2007 Jun; 9(3):307-14. PubMed ID: 17203381 [TBL] [Abstract][Full Text] [Related]
22. Self-actuated, thermo-responsive hydrogel valves for lab on a chip. Wang J; Chen Z; Mauk M; Hong KS; Li M; Yang S; Bau HH Biomed Microdevices; 2005 Dec; 7(4):313-22. PubMed ID: 16404509 [TBL] [Abstract][Full Text] [Related]
23. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application. Chung KH; Hong JW; Lee DS; Yoon HC Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640 [TBL] [Abstract][Full Text] [Related]
24. Microfabricated in-channel structured polydimethylsiloxane microfluidic system for a lab-on-a-chip. Ra GS; Yoo JC; Kang CJ; Kim YS J Nanosci Nanotechnol; 2008 Sep; 8(9):4588-92. PubMed ID: 19049064 [TBL] [Abstract][Full Text] [Related]
25. Micropillar array chip for integrated white blood cell isolation and PCR. Panaro NJ; Lou XJ; Fortina P; Kricka LJ; Wilding P Biomol Eng; 2005 Feb; 21(6):157-62. PubMed ID: 15748689 [TBL] [Abstract][Full Text] [Related]
26. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection. Wang CH; Lee GB Biosens Bioelectron; 2005 Sep; 21(3):419-25. PubMed ID: 16076430 [TBL] [Abstract][Full Text] [Related]
27. A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture. Wu MH; Huang SB; Cui Z; Cui Z; Lee GB Biomed Microdevices; 2008 Apr; 10(2):309-19. PubMed ID: 18026840 [TBL] [Abstract][Full Text] [Related]
29. Simulation-based analysis of fluid flow and electrokinetic phenomena in microfluidic devices. Krishnamoorthy S; Bedekar AS; Feng J; Sundaram S Clin Lab Med; 2007 Mar; 27(1):41-59. PubMed ID: 17416301 [TBL] [Abstract][Full Text] [Related]
30. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582 [TBL] [Abstract][Full Text] [Related]
32. Automated chip-based device for simple and fast nucleic acid amplification. Münchow G; Dadic D; Doffing F; Hardt S; Drese KS Expert Rev Mol Diagn; 2005 Jul; 5(4):613-20. PubMed ID: 16013978 [TBL] [Abstract][Full Text] [Related]
33. PMMA/PDMS valves and pumps for disposable microfluidics. Zhang W; Lin S; Wang C; Hu J; Li C; Zhuang Z; Zhou Y; Mathies RA; Yang CJ Lab Chip; 2009 Nov; 9(21):3088-94. PubMed ID: 19823724 [TBL] [Abstract][Full Text] [Related]
34. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip. Gui L; Ren CL Anal Chem; 2006 Sep; 78(17):6215-22. PubMed ID: 16944904 [TBL] [Abstract][Full Text] [Related]
35. Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Park JM; Cho YK; Lee BS; Lee JG; Ko C Lab Chip; 2007 May; 7(5):557-64. PubMed ID: 17476373 [TBL] [Abstract][Full Text] [Related]