These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17601723)

  • 1. Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures.
    Neves L; Gonçalo E; Oliveira R; Alves MM
    Waste Manag; 2008; 28(6):965-72. PubMed ID: 17601723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step.
    Rincón B; Borja R; Martín MA; Martín A
    Waste Manag; 2009 Sep; 29(9):2566-73. PubMed ID: 19450962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the biomethane potential of solid fish waste.
    Eiroa M; Costa JC; Alves MM; Kennes C; Veiga MC
    Waste Manag; 2012 Jul; 32(7):1347-52. PubMed ID: 22520161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic co-digestion of coffee waste and sewage sludge.
    Neves L; Oliveira R; Alves MM
    Waste Manag; 2006; 26(2):176-81. PubMed ID: 16310117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Athermal microwave effects for enhancing digestibility of waste activated sludge.
    Eskicioglu C; Terzian N; Kennedy KJ; Droste RL; Hamoda M
    Water Res; 2007 Jun; 41(11):2457-66. PubMed ID: 17451781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation.
    Jokela JP; Vavilin VA; Rintala JA
    Bioresour Technol; 2005 Mar; 96(4):501-8. PubMed ID: 15491833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the natural biodegradation of two-phase olive mill solid waste during its storage in an evaporation pond.
    Borja R; Sánchez E; Raposo F; Rincón B; Jiménez AM; Martín A
    Waste Manag; 2006; 26(5):477-86. PubMed ID: 15963711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry.
    Luste S; Luostarinen S; Sillanpää M
    J Hazard Mater; 2009 May; 164(1):247-55. PubMed ID: 18805637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term (1,243 days), low-temperature (4-15 degrees C), anaerobic biotreatment of acidified wastewaters: bioprocess performance and physiological characteristics.
    McKeown RM; Scully C; Mahony T; Collins G; O'Flaherty V
    Water Res; 2009 Apr; 43(6):1611-20. PubMed ID: 19217137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics for substrate utilization and methane production during the mesophilic anaerobic digestion of two phases olive pomace (TPOP).
    Borja R; Martín A; Rincón B; Raposo F
    J Agric Food Chem; 2003 May; 51(11):3390-5. PubMed ID: 12744672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes.
    Alvarez JA; Otero L; Lema JM
    Bioresour Technol; 2010 Feb; 101(4):1153-8. PubMed ID: 19833510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on acidification in two-phase biomethanation process of municipal solid waste.
    Bhattacharyya JK; Kumar S; Devotta S
    Waste Manag; 2008; 28(1):164-9. PubMed ID: 17276666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste.
    Charles W; Walker L; Cord-Ruwisch R
    Bioresour Technol; 2009 Apr; 100(8):2329-35. PubMed ID: 19128961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic batch degradation of solid poultry slaughterhouse waste.
    Salminen E; Rintala J; Lokshina LY; Vavilin VA
    Water Sci Technol; 2000; 41(3):33-41. PubMed ID: 11386301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of an acidic and readily-biodegradable non-hazardous industrial process waste on refuse decomposition.
    Sadri A; Staley BF; Barlaz MA; Xu F; Hater GR
    Waste Manag; 2010 Mar; 30(3):389-95. PubMed ID: 19954958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge.
    Costa JC; Gonçalves PR; Nobre A; Alves MM
    Bioresour Technol; 2012 Jun; 114():320-6. PubMed ID: 22459959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling solid waste decomposition.
    Vavilin VA; Lokshina LY; Jokela JP; Rintala JA
    Bioresour Technol; 2004 Aug; 94(1):69-81. PubMed ID: 15081490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic digestion of food waste: comparing leachate exchange rates in sequential batch systems digesting food waste and biosolids.
    Dearman B; Bentham RH
    Waste Manag; 2007; 27(12):1792-9. PubMed ID: 17055238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digestion of waste bananas to generate energy in Australia.
    Clarke WP; Radnidge P; Lai TE; Jensen PD; Hardin MT
    Waste Manag; 2008; 28(3):527-33. PubMed ID: 17376668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leachate recirculation effects on waste degradation: study on columns.
    Francois V; Feuillade G; Matejka G; Lagier T; Skhiri N
    Waste Manag; 2007; 27(9):1259-72. PubMed ID: 17224263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.