BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 17601783)

  • 21. Regulation of biofilm formation in Pseudomonas and Burkholderia species.
    Fazli M; Almblad H; Rybtke ML; Givskov M; Eberl L; Tolker-Nielsen T
    Environ Microbiol; 2014 Jul; 16(7):1961-81. PubMed ID: 24592823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain.
    Hay ID; Gatland K; Campisano A; Jordens JZ; Rehm BH
    Appl Environ Microbiol; 2009 Sep; 75(18):6022-5. PubMed ID: 19648373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing.
    Leid JG; Willson CJ; Shirtliff ME; Hassett DJ; Parsek MR; Jeffers AK
    J Immunol; 2005 Dec; 175(11):7512-8. PubMed ID: 16301659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide.
    Boyd A; Chakrabarty AM
    J Ind Microbiol; 1995 Sep; 15(3):162-8. PubMed ID: 8519473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A natural antisense transcript regulates mucD gene expression and biofilm biosynthesis in Pseudomonas aeruginosa.
    Yang Z; Jin X; Rao X; Hu F
    Mikrobiologiia; 2011; 80(6):756-62. PubMed ID: 22393760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms.
    Sarkisova S; Patrauchan MA; Berglund D; Nivens DE; Franklin MJ
    J Bacteriol; 2005 Jul; 187(13):4327-37. PubMed ID: 15968041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function.
    Hentzer M; Teitzel GM; Balzer GJ; Heydorn A; Molin S; Givskov M; Parsek MR
    J Bacteriol; 2001 Sep; 183(18):5395-401. PubMed ID: 11514525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment.
    Orgad O; Oren Y; Walker SL; Herzberg M
    Biofouling; 2011 Aug; 27(7):787-98. PubMed ID: 21797737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms.
    Wozniak DJ; Wyckoff TJ; Starkey M; Keyser R; Azadi P; O'Toole GA; Parsek MR
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7907-12. PubMed ID: 12810959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol.
    Kivistik PA; Putrins M; Püvi K; Ilves H; Kivisaar M; Hõrak R
    J Bacteriol; 2006 Dec; 188(23):8109-17. PubMed ID: 17012397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of ambroxol on alginate of mature Pseudomonas aeruginosa biofilms.
    Li F; Yu J; Yang H; Wan Z; Bai D
    Curr Microbiol; 2008 Jul; 57(1):1-7. PubMed ID: 18389310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation.
    Pham TH; Webb JS; Rehm BH
    Microbiology (Reading); 2004 Oct; 150(Pt 10):3405-13. PubMed ID: 15470118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa.
    Schobert M; Tielen P
    Future Microbiol; 2010 Apr; 5(4):603-21. PubMed ID: 20353301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development.
    Matsukawa M; Greenberg EP
    J Bacteriol; 2004 Jul; 186(14):4449-56. PubMed ID: 15231776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas species.
    Choy WK; Zhou L; Syn CK; Zhang LH; Swarup S
    J Bacteriol; 2004 Nov; 186(21):7221-8. PubMed ID: 15489433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa.
    Tielen P; Kuhn H; Rosenau F; Jaeger KE; Flemming HC; Wingender J
    BMC Microbiol; 2013 Jul; 13():159. PubMed ID: 23848942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: Roles of sigma (AlgT) and the AlgW and Prc proteases.
    Wood LF; Leech AJ; Ohman DE
    Mol Microbiol; 2006 Oct; 62(2):412-26. PubMed ID: 17020580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pseudomonas aeruginosa Aggregate Formation in an Alginate Bead Model System Exhibits
    Sønderholm M; Kragh KN; Koren K; Jakobsen TH; Darch SE; Alhede M; Jensen PØ; Whiteley M; Kühl M; Bjarnsholt T
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms.
    Klausen M; Gjermansen M; Kreft JU; Tolker-Nielsen T
    FEMS Microbiol Lett; 2006 Aug; 261(1):1-11. PubMed ID: 16842351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response.
    Svenningsen NB; Pérez-Pantoja D; Nikel PI; Nicolaisen MH; de Lorenzo V; Nybroe O
    BMC Microbiol; 2015 Oct; 15():202. PubMed ID: 26445482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.