These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 17601783)

  • 41. Identification of a periplasmic AlgK-AlgX-MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate.
    Hay ID; Schmidt O; Filitcheva J; Rehm BH
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):215-27. PubMed ID: 21713511
    [TBL] [Abstract][Full Text] [Related]  

  • 42. AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa.
    Robles-Price A; Wong TY; Sletta H; Valla S; Schiller NL
    J Bacteriol; 2004 Nov; 186(21):7369-77. PubMed ID: 15489449
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing.
    Matz C; Bergfeld T; Rice SA; Kjelleberg S
    Environ Microbiol; 2004 Mar; 6(3):218-26. PubMed ID: 14871206
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NudC Nudix hydrolase from Pseudomonas syringae, but not its counterpart from Pseudomonas aeruginosa, is a novel regulator of intracellular redox balance required for growth, motility and biofilm formation.
    Modzelan M; Kujawa M; Głąbski K; Jagura-Burdzy G; Kraszewska E
    Mol Microbiol; 2014 Sep; 93(5):867-82. PubMed ID: 24989777
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studying the effect of alginate overproduction on Pseudomonas aeruginosa biofilm by atomic force microscopy.
    Lim J; Cui Y; Oh YJ; Park JR; Jo W; Cho YH; Park S
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5676-81. PubMed ID: 22121590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pseudomonas aeruginosa AmrZ Binds to Four Sites in the algD Promoter, Inducing DNA-AmrZ Complex Formation and Transcriptional Activation.
    Xu B; Soukup RJ; Jones CJ; Fishel R; Wozniak DJ
    J Bacteriol; 2016 Oct; 198(19):2673-81. PubMed ID: 27185826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae.
    Peñaloza-Vázquez A; Kidambi SP; Chakrabarty AM; Bender CL
    J Bacteriol; 1997 Jul; 179(14):4464-72. PubMed ID: 9226254
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa.
    Hoffmann N; Rehm BH
    FEMS Microbiol Lett; 2004 Aug; 237(1):1-7. PubMed ID: 15268931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients.
    Lee B; Schjerling CK; Kirkby N; Hoffmann N; Borup R; Molin S; Høiby N; Ciofu O
    APMIS; 2011 Apr; 119(4-5):263-74. PubMed ID: 21492226
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and characterization of a novel inhibitor of alginate overproduction in Pseudomonas aeruginosa.
    Withers TR; Yin Y; Yu HD
    Pathog Dis; 2014 Mar; 70(2):185-8. PubMed ID: 24115673
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal.
    Gjermansen M; Ragas P; Tolker-Nielsen T
    FEMS Microbiol Lett; 2006 Dec; 265(2):215-24. PubMed ID: 17054717
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic evidence that loss of virulence associated with gacS or gacA mutations in Pseudomonas syringae B728a does not result from effects on alginate production.
    Willis DK; Holmstadt JJ; Kinscherf TG
    Appl Environ Microbiol; 2001 Mar; 67(3):1400-3. PubMed ID: 11229941
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae.
    Kidambi SP; Sundin GW; Palmer DA; Chakrabarty AM; Bender CL
    Appl Environ Microbiol; 1995 Jun; 61(6):2172-9. PubMed ID: 7793938
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis.
    Lizewski SE; Schurr JR; Jackson DW; Frisk A; Carterson AJ; Schurr MJ
    J Bacteriol; 2004 Sep; 186(17):5672-84. PubMed ID: 15317771
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interplay between extracellular matrix components of Pseudomonas putida biofilms.
    Martínez-Gil M; Quesada JM; Ramos-González MI; Soriano MI; de Cristóbal RE; Espinosa-Urgel M
    Res Microbiol; 2013 Jun; 164(5):382-9. PubMed ID: 23562948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of higher alginate expression on deposition of Pseudomonas aeruginosa in radial stagnation point flow and reverse osmosis systems.
    Herzberg M; Rezene TZ; Ziemba C; Gillor O; Mathee K
    Environ Sci Technol; 2009 Oct; 43(19):7376-83. PubMed ID: 19848149
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extracellular DNA in single- and multiple-species unsaturated biofilms.
    Steinberger RE; Holden PA
    Appl Environ Microbiol; 2005 Sep; 71(9):5404-10. PubMed ID: 16151131
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetics and regulation of bacterial alginate production.
    Hay ID; Wang Y; Moradali MF; Rehman ZU; Rehm BH
    Environ Microbiol; 2014 Oct; 16(10):2997-3011. PubMed ID: 24428834
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of polysaccharides in Pseudomonas aeruginosa biofilm development.
    Ryder C; Byrd M; Wozniak DJ
    Curr Opin Microbiol; 2007 Dec; 10(6):644-8. PubMed ID: 17981495
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of the alginate production on cell-to-cell communication in Pseudomonas aeruginosa PAO1.
    Yang J; Toyofuku M; Sakai R; Nomura N
    Environ Microbiol Rep; 2017 Jun; 9(3):239-249. PubMed ID: 28120378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.