These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

765 related articles for article (PubMed ID: 17601803)

  • 1. Effects of modified constraint-induced movement therapy on movement kinematics and daily function in patients with stroke: a kinematic study of motor control mechanisms.
    Wu CY; Lin KC; Chen HC; Chen IH; Hong WH
    Neurorehabil Neural Repair; 2007; 21(5):460-6. PubMed ID: 17601803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: changes in motor impairment, daily functioning, and quality of life.
    Wu CY; Chen CL; Tsai WC; Lin KC; Chou SH
    Arch Phys Med Rehabil; 2007 Mar; 88(3):273-8. PubMed ID: 17321816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of trunk restraint to home-based modified constraint-induced movement therapy does not bring additional benefits in chronic stroke individuals with mild and moderate upper limb impairments: A pilot randomized controlled trial.
    Lima RC; Michaelsen SM; Nascimento LR; Polese JC; Pereira ND; Teixeira-Salmela LF
    NeuroRehabilitation; 2014; 35(3):391-404. PubMed ID: 25227543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Modified Constraint-Induced Movement Therapy Combined with Auditory Feedback for Trunk Control on Upper Extremity in Subacute Stroke Patients with Moderate Impairment: Randomized Controlled Pilot Trial.
    Bang DH
    J Stroke Cerebrovasc Dis; 2016 Jul; 25(7):1606-1612. PubMed ID: 27062417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is modified constraint-induced movement therapy more effective than bimanual training in improving arm motor function in the subacute phase post stroke? A randomized controlled trial.
    Brunner IC; Skouen JS; Strand LI
    Clin Rehabil; 2012 Dec; 26(12):1078-86. PubMed ID: 22561098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of modified constraint-induced movement therapy combined with trunk restraint in subacute stroke: a double-blinded randomized controlled trial.
    Bang DH; Shin WS; Choi SJ
    Clin Rehabil; 2015 Jun; 29(6):561-9. PubMed ID: 25246609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: a randomized controlled study.
    Lin KC; Wu CY; Wei TH; Lee CY; Liu JS
    Clin Rehabil; 2007 Dec; 21(12):1075-86. PubMed ID: 18042603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of bilateral arm training on motor control and functional performance in chronic stroke: a randomized controlled study.
    Lin KC; Chen YA; Chen CL; Wu CY; Chang YF
    Neurorehabil Neural Repair; 2010 Jan; 24(1):42-51. PubMed ID: 19729583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot trial of distributed constraint-induced therapy with trunk restraint to improve poststroke reach to grasp and trunk kinematics.
    Wu CY; Chen YA; Chen HC; Lin KC; Yeh IL
    Neurorehabil Neural Repair; 2012; 26(3):247-55. PubMed ID: 21903975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic and clinical analyses of upper-extremity movements after constraint-induced movement therapy in patients with stroke: a randomized controlled trial.
    Wu CY; Chen CL; Tang SF; Lin KC; Huang YY
    Arch Phys Med Rehabil; 2007 Aug; 88(8):964-70. PubMed ID: 17678656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of modified constraint-induced movement therapy with trunk restraint in early stroke patients: A single-blinded, randomized, controlled, pilot trial.
    Bang DH; Shin WS; Choi HS
    NeuroRehabilitation; 2018; 42(1):29-35. PubMed ID: 29400671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of modified constraint-induced movement therapy on movement kinematics and daily function in patients with stroke: a kinematic study of motor control mechanisms.
    Page SJ
    Neurorehabil Neural Repair; 2007; 21(6):574; author reply 574-5. PubMed ID: 17940276
    [No Abstract]   [Full Text] [Related]  

  • 13. Constraint-induced therapy with trunk restraint for improving functional outcomes and trunk-arm control after stroke: a randomized controlled trial.
    Wu CY; Chen YA; Lin KC; Chao CP; Chen YT
    Phys Ther; 2012 Apr; 92(4):483-92. PubMed ID: 22228607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Randomized trial of distributed constraint-induced therapy versus bilateral arm training for the rehabilitation of upper-limb motor control and function after stroke.
    Wu CY; Chuang LL; Lin KC; Chen HC; Tsay PK
    Neurorehabil Neural Repair; 2011 Feb; 25(2):130-9. PubMed ID: 20947493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of constraint-induced therapy versus bilateral arm training on motor performance, daily functions, and quality of life in stroke survivors.
    Lin KC; Chang YF; Wu CY; Chen YA
    Neurorehabil Neural Repair; 2009 Jun; 23(5):441-8. PubMed ID: 19118130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A randomized controlled trial of self-regulated modified constraint-induced movement therapy in sub-acute stroke patients.
    Liu KP; Balderi K; Leung TL; Yue AS; Lam NC; Cheung JT; Fong SS; Sum CM; Bissett M; Rye R; Mok VC
    Eur J Neurol; 2016 Aug; 23(8):1351-60. PubMed ID: 27194393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The efficacy of Wii-based Movement Therapy for upper limb rehabilitation in the chronic poststroke period: a randomized controlled trial.
    McNulty PA; Thompson-Butel AG; Faux SG; Lin G; Katrak PH; Harris LR; Shiner CT
    Int J Stroke; 2015 Dec; 10(8):1253-60. PubMed ID: 26332338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced-intensity modified constraint-induced movement therapy versus conventional therapy for upper extremity rehabilitation after stroke: a multicenter trial.
    Smania N; Gandolfi M; Paolucci S; Iosa M; Ianes P; Recchia S; Giovanzana C; Molteni F; Avesani R; Di Paolo P; Zaccala M; Agostini M; Tassorelli C; Fiaschi A; Primon D; Ceravolo MG; Farina S
    Neurorehabil Neural Repair; 2012; 26(9):1035-45. PubMed ID: 22661278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke.
    Hsieh YW; Liing RJ; Lin KC; Wu CY; Liou TH; Lin JC; Hung JW
    J Neuroeng Rehabil; 2016 Mar; 13():31. PubMed ID: 27000446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraint-induced therapy versus dose-matched control intervention to improve motor ability, basic/extended daily functions, and quality of life in stroke.
    Lin KC; Wu CY; Liu JS; Chen YT; Hsu CJ
    Neurorehabil Neural Repair; 2009 Feb; 23(2):160-5. PubMed ID: 18981188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.