BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17601814)

  • 1. Glutathione protects Lactococcus lactis against acid stress.
    Zhang J; Fu RY; Hugenholtz J; Li Y; Chen J
    Appl Environ Microbiol; 2007 Aug; 73(16):5268-75. PubMed ID: 17601814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Glutathione plays an anti-oxidant role in Lactococcus lactis].
    Fu RY; Chen J; Li Y
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):379-84. PubMed ID: 16933605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione protects Lactococcus lactis against oxidative stress.
    Li Y; Hugenholtz J; Abee T; Molenaar D
    Appl Environ Microbiol; 2003 Oct; 69(10):5739-45. PubMed ID: 14532020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host.
    Fu RY; Bongers RS; van Swam II; Chen J; Molenaar D; Kleerebezem M; Hugenholtz J; Li Y
    Metab Eng; 2006 Nov; 8(6):662-71. PubMed ID: 16962352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analyses to reveal the protective role of glutathione in resistance of Lactococcus lactis to osmotic stress.
    Zhang Y; Zhang Y; Zhu Y; Mao S; Li Y
    Appl Environ Microbiol; 2010 May; 76(10):3177-86. PubMed ID: 20348298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of expression of transglutaminase on the growth of Lactococcus lactis].
    Fu RY; Chen J; Li Y
    Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):510-5. PubMed ID: 16245860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Casitone-mediated expression of the prtP and prtM genes in Lactococcus lactis subsp. lactis BGIS29.
    Miladinov N; Kuipers OP; Topisirovic L
    Arch Microbiol; 2001 Dec; 177(1):54-61. PubMed ID: 11797045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Attenuation of Uranyl Toxicity by Glutathione in Lactococcus lactis.
    Obeid MH; Oertel J; Solioz M; Fahmy K
    Appl Environ Microbiol; 2016 Jun; 82(12):3563-3571. PubMed ID: 27060118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose metabolism and internal pH of Lactococcus lactis subsp. lactis cells utilizing NMR spectroscopy.
    Foucaud C; Herve M; Neumann JM; Hemme D
    Lett Appl Microbiol; 1995 Jul; 21(1):10-3. PubMed ID: 7662330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses.
    Kim WS; Ren J; Dunn NW
    FEMS Microbiol Lett; 1999 Feb; 171(1):57-65. PubMed ID: 9987842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of starters on chemical, biochemical, and sensory changes in Turkish White-brined cheese during ripening.
    Hayaloglu AA; Guven M; Fox PF; McSweeney PL
    J Dairy Sci; 2005 Oct; 88(10):3460-74. PubMed ID: 16162519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of RecO deficiency in Lactococcus lactis NZ9000 on resistance to multiple environmental stresses.
    Zhang M; Chen J; Zhang J; Du G
    J Sci Food Agric; 2014 Dec; 94(15):3125-33. PubMed ID: 24648035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods.
    Sheng Y; Yang X; Lian Y; Zhang B; He X; Xu W; Huang K
    Environ Toxicol Pharmacol; 2016 Sep; 46():286-291. PubMed ID: 27522548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment.
    Siezen RJ; Renckens B; van Swam I; Peters S; van Kranenburg R; Kleerebezem M; de Vos WM
    Appl Environ Microbiol; 2005 Dec; 71(12):8371-82. PubMed ID: 16332824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-L-methionine.
    Xu C; Shi Z; Shao J; Yu C; Xu Z
    World J Microbiol Biotechnol; 2019 Nov; 35(12):185. PubMed ID: 31728760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systemic understanding of Lactococcus lactis response to acid stress using transcriptomics approaches.
    Zhu Z; Yang P; Wu Z; Zhang J; Du G
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1621-1629. PubMed ID: 31414323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.
    del Rio B; Ladero V; Redruello B; Linares DM; Fernández M; Martín MC; Alvarez MA
    Food Microbiol; 2015 Jun; 48():163-70. PubMed ID: 25791004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism.
    Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.