BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1760221)

  • 1. Differential changes in expression of the neurofilament triplet protein-immunoreactivity in Purkinje cells of the cerebellum during the postnatal development of rats.
    Kondo H; Takahashi-Iwanaga H; Abe H; Watanabe M; Takahashi Y
    Arch Histol Cytol; 1991 Oct; 54(4):437-45. PubMed ID: 1760221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purkinje-like cells in rat cochlear nucleus.
    Hurd LB; Feldman ML
    Hear Res; 1994 Jan; 72(1-2):143-58. PubMed ID: 8150731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Purkinje cell bodies and processes with basic fibroblast growth factor-like immunoreactivity in the rat cerebellum.
    Matsuda S; Ii Y; Desaki J; Yoshimura H; Okumura N; Sakanaka M
    Neuroscience; 1994 Apr; 59(3):651-62. PubMed ID: 7516507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An immunohistochemical study on the ontogeny of cells immunoreactive for spot 35 protein, a novel Purkinje cell-specific protein, in the rat cerebellum.
    Takahashi-Iwanaga H; Kondo H; Yamakuni T; Takahashi Y
    Brain Res; 1986 Oct; 394(2):225-31. PubMed ID: 3533215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis.
    Dumesnil-Bousez N; Sotelo C
    J Neurocytol; 1992 Jul; 21(7):506-29. PubMed ID: 1500948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenytoin alters Purkinje cell axon morphology and targeting in vitro.
    Tauer U; Knoth R; Volk B
    Acta Neuropathol; 1998 Jun; 95(6):583-91. PubMed ID: 9650750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: quantitative analysis by immunogold labeling.
    Kosaka T; Kosaka K; Nakayama T; Hunziker W; Heizmann CW
    Exp Brain Res; 1993; 93(3):483-91. PubMed ID: 8519337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormalities in cerebellar Purkinje cells in the novel ataxic mutant mouse, pogo.
    Jeong YG; Hyun BH; Hawkes R
    Brain Res Dev Brain Res; 2000 Dec; 125(1-2):61-7. PubMed ID: 11154761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression and modification of neurofilament triplet proteins during cat cerebellar development.
    Riederer BM; Porchet R; Marugg RA
    J Comp Neurol; 1996 Jan; 364(4):704-17. PubMed ID: 8821456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting.
    Dumesnil-Bousez N; Sotelo C
    Neuroscience; 1993 Jul; 55(1):1-21. PubMed ID: 8350981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin-like growth factor I-immunoreactive peptide in adult human cerebellar Purkinje cells: co-localization with low-affinity nerve growth factor receptor.
    Aguado F; Sánchez-Franco F; Rodrigo J; Cacicedo L; Martínez-Murillo R
    Neuroscience; 1994 Apr; 59(3):641-50. PubMed ID: 8008211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytological compartmentalization in the staggerer cerebellum, as revealed by calbindin immunohistochemistry for Purkinje cells.
    Nakagawa S; Watanabe M; Isobe T; Kondo H; Inoue Y
    J Comp Neurol; 1998 May; 395(1):112-20. PubMed ID: 9590549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat.
    Alcántara S; Ferrer I; Soriano E
    Anat Embryol (Berl); 1993 Jul; 188(1):63-73. PubMed ID: 8214625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of calretinin, calbindin D28K and parvalbumin in the developing human cerebellum.
    Yew DT; Luo CB; Heizmann CW; Chan WY
    Brain Res Dev Brain Res; 1997 Oct; 103(1):37-45. PubMed ID: 9370058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogenic changes in expression of neuron-specific enolase (NSE) and its mRNA in the Purkinje cells of the rat cerebellum: immunohistochemical and in situ hybridization study.
    Watanabe M; Sakimura K; Takahashi Y; Kondo H
    Brain Res Dev Brain Res; 1990 Apr; 53(1):89-96. PubMed ID: 2350885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ hybridization histochemistry of Spot 35 protein, a calcium-binding protein, in the rat brain.
    Usui H; Katagiri T; Yoshida Y; Nishiyama A; Ichikawa T; Kuwano R; Takahashi Y; Kumanishi T
    Mol Chem Neuropathol; 1991 Dec; 15(3):207-16. PubMed ID: 1807267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of calbindin D28k, calretinin and parvalbumin in the cerebellum of pups of ethanol-treated female rats.
    Wierzba-Bobrowicz T; Lewandowska E; Stępień T; Szpak GM
    Folia Neuropathol; 2011; 49(1):47-55. PubMed ID: 21455843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunocytochemical localization of the plasma membrane calcium pump, calbindin-D28k, and parvalbumin in Purkinje cells of avian and mammalian cerebellum.
    Tolosa de Talamoni N; Smith CA; Wasserman RH; Beltramino C; Fullmer CS; Penniston JT
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11949-53. PubMed ID: 8265654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dying-back of Purkinje cell dendrites with synapse loss in aging rats.
    Chen S; Hillman DE
    J Neurocytol; 1999 Mar; 28(3):187-96. PubMed ID: 10617901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Purkinje cells in humans: an immunohistochemical study using a monoclonal antibody against the inositol 1,4,5-triphosphate type 1 receptor (IP3R1).
    Miyata M; Miyata H; Mikoshiba K; Ohama E
    Acta Neuropathol; 1999 Sep; 98(3):226-32. PubMed ID: 10483778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.