These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structure and thermotropic phase behavior of fluorinated phospholipid bilayers: a combined attenuated total reflection FTIR spectroscopy and imaging ellipsometry study. Schuy S; Faiss S; Yoder NC; Kalsani V; Kumar K; Janshoff A; Vogel R J Phys Chem B; 2008 Jul; 112(28):8250-6. PubMed ID: 18563929 [TBL] [Abstract][Full Text] [Related]
3. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
4. Packing characteristics of two-component bilayers composed of ester- and ether-linked phospholipids. Batenjany MM; O'Leary TJ; Levin IW; Mason JT Biophys J; 1997 Apr; 72(4):1695-700. PubMed ID: 9083673 [TBL] [Abstract][Full Text] [Related]
5. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs. Lewis RN; Pohle W; McElhaney RN Biophys J; 1996 Jun; 70(6):2736-46. PubMed ID: 8744311 [TBL] [Abstract][Full Text] [Related]
6. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
7. Phase behavior and nanoscale structure of phospholipid membranes incorporated with acylated C14-peptides. Pedersen TB; Kaasgaard T; Jensen MØ; Frokjaer S; Mouritsen OG; Jørgensen K Biophys J; 2005 Oct; 89(4):2494-503. PubMed ID: 16100273 [TBL] [Abstract][Full Text] [Related]
9. Effects of cholesterol on phospholipid membranes: inhibition of the interdigitated gel phase of F-DPPC and F-DPPC/DPPC. Smith EA; Wang W; Dea PK Chem Phys Lipids; 2012 Feb; 165(2):151-9. PubMed ID: 22200532 [TBL] [Abstract][Full Text] [Related]
10. Liquid crystalline/gel state phase separation in docosahexaenoic acid-containing bilayers and monolayers. Dumaual AC; Jenski LJ; Stillwell W Biochim Biophys Acta; 2000 Feb; 1463(2):395-406. PubMed ID: 10675516 [TBL] [Abstract][Full Text] [Related]
11. Interaction of cationic surfactants with DPPC membranes: effect of a novel N Hermet M; Elisa Fait M; Vazquez RF; Mate S; Daza Millone MA; Elena Vela M; García MT; Morcelle SR; Bakas L Amino Acids; 2021 Apr; 53(4):609-619. PubMed ID: 33710434 [TBL] [Abstract][Full Text] [Related]
12. Ceramide-1-phosphate, in contrast to ceramide, is not segregated into lateral lipid domains in phosphatidylcholine bilayers. Morrow MR; Helle A; Perry J; Vattulainen I; Wiedmer SK; Holopainen JM Biophys J; 2009 Mar; 96(6):2216-26. PubMed ID: 19289048 [TBL] [Abstract][Full Text] [Related]
13. Curcumin disorders 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes and favors the formation of nonlamellar structures by 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine. Pérez-Lara A; Ausili A; Aranda FJ; de Godos A; Torrecillas A; Corbalán-García S; Gómez-Fernández JC J Phys Chem B; 2010 Aug; 114(30):9778-86. PubMed ID: 20666521 [TBL] [Abstract][Full Text] [Related]
14. Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy. Liu J; Conboy JC J Am Chem Soc; 2004 Jul; 126(29):8894-5. PubMed ID: 15264810 [TBL] [Abstract][Full Text] [Related]
15. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Wesołowska O; Gąsiorowska J; Petrus J; Czarnik-Matusewicz B; Michalak K Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):173-84. PubMed ID: 24060562 [TBL] [Abstract][Full Text] [Related]
16. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Garcia-Manyes S; Oncins G; Sanz F Biophys J; 2005 Sep; 89(3):1812-26. PubMed ID: 15980180 [TBL] [Abstract][Full Text] [Related]
17. The effect of temperature on supported dipalmitoylphosphatidylcholine (DPPC) bilayers: structure and lubrication performance. Wang M; Zander T; Liu X; Liu C; Raj A; Florian Wieland DC; Garamus VM; Willumeit-Römer R; Claesson PM; Dėdinaitė A J Colloid Interface Sci; 2015 May; 445():84-92. PubMed ID: 25596372 [TBL] [Abstract][Full Text] [Related]
18. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers. Paré C; Lafleur M; Liu F; Lewis RN; McElhaney RN Biochim Biophys Acta; 2001 Mar; 1511(1):60-73. PubMed ID: 11248205 [TBL] [Abstract][Full Text] [Related]
19. Magnetic alignment and orientational order of dipalmitoylphosphatidylcholine bilayers containing palmitoyllysophosphatidylcholine. Jansson M; Thurmond RL; Trouard TP; Brown MF Chem Phys Lipids; 1990 Jun; 54(3-4):157-70. PubMed ID: 2225236 [TBL] [Abstract][Full Text] [Related]
20. L-tryptophan-induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence. Sarangi NK; Patnaik A Chemphyschem; 2012 Dec; 13(18):4258-70. PubMed ID: 23090939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]