These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Analysis of the interfacial properties of fibrillated and nonfibrillated oral streptococcal strains from electrophoretic mobility and titration measurements: evidence for the shortcomings of the 'classical soft-particle approach'. Duval JF; Busscher HJ; van de Belt-Gritter B; van der Mei HC; Norde W Langmuir; 2005 Nov; 21(24):11268-82. PubMed ID: 16285800 [TBL] [Abstract][Full Text] [Related]
28. Effects of water dissociation and CO2 contamination on the electrophoretic mobility of a spherical particle in aqueous salt-free concentrated suspensions. Carrique F; Ruiz-Reina E J Phys Chem B; 2009 Jun; 113(25):8613-25. PubMed ID: 19485311 [TBL] [Abstract][Full Text] [Related]
29. Anomalous low-frequency electro-optic behavior of ferric oxide particles in the presence of poly(ethylene oxide). Milkova V; Radeva Ts; Stoimenova M J Colloid Interface Sci; 2008 Mar; 319(2):435-40. PubMed ID: 18155226 [TBL] [Abstract][Full Text] [Related]
30. Salt concentration and particle density dependence of electrophoretic mobilities of spherical colloids in aqueous suspension. Reiber H; Köller T; Palberg T; Carrique F; Ruiz Reina E; Piazza R J Colloid Interface Sci; 2007 May; 309(2):315-22. PubMed ID: 17331523 [TBL] [Abstract][Full Text] [Related]
31. Electric-field-enhanced transport in polyacrylamide hydrogel nanocomposites. Hill RJ J Colloid Interface Sci; 2007 Dec; 316(2):635-44. PubMed ID: 17915246 [TBL] [Abstract][Full Text] [Related]
32. Electrokinetic modeling of metal oxides. Allison S J Colloid Interface Sci; 2009 Apr; 332(1):1-10. PubMed ID: 19101679 [TBL] [Abstract][Full Text] [Related]
34. Electrokinetics in nanochannels: part II. Mobility dependence on ion density and ionic current measurements. Baldessari F; Santiago JG J Colloid Interface Sci; 2008 Sep; 325(2):539-46. PubMed ID: 18639884 [TBL] [Abstract][Full Text] [Related]
35. Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium. Baldessari F; Santiago JG J Colloid Interface Sci; 2008 Sep; 325(2):526-38. PubMed ID: 18639883 [TBL] [Abstract][Full Text] [Related]
36. Electrokinetic transport of rigid macroions in the thin double layer limit: a boundary element approach. Allison SA; Xin Y J Colloid Interface Sci; 2005 Aug; 288(2):616-28. PubMed ID: 15927633 [TBL] [Abstract][Full Text] [Related]
37. Numerical calculation of the electrophoretic mobility of concentrated suspensions of soft particles. López-García JJ; Grosse C; Horno J J Colloid Interface Sci; 2006 Sep; 301(2):651-9. PubMed ID: 16777131 [TBL] [Abstract][Full Text] [Related]
38. Soft-particle model analysis of effect of LPS on electrophoretic softness of Acidithiobacillus ferrooxidans grown in presence of different metal ions. Chandraprabha MN; Modak JM; Natarajan KA Colloids Surf B Biointerfaces; 2009 Feb; 69(1):1-7. PubMed ID: 19101128 [TBL] [Abstract][Full Text] [Related]
39. Interpretation of ion-exchange chromatographic retention based on an electrical double-layer model. Okada T Anal Chem; 1998 May; 70(9):1692-700. PubMed ID: 21651263 [TBL] [Abstract][Full Text] [Related]
40. Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Leinweber FC; Tallarek U Langmuir; 2004 Dec; 20(26):11637-48. PubMed ID: 15595793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]