These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17602601)

  • 1. Transient pockets on protein surfaces involved in protein-protein interaction.
    Eyrisch S; Helms V
    J Med Chem; 2007 Jul; 50(15):3457-64. PubMed ID: 17602601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What induces pocket openings on protein surface patches involved in protein-protein interactions?
    Eyrisch S; Helms V
    J Comput Aided Mol Des; 2009 Feb; 23(2):73-86. PubMed ID: 18777159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.
    Kokh DB; Czodrowski P; Rippmann F; Wade RC
    J Chem Theory Comput; 2016 Aug; 12(8):4100-13. PubMed ID: 27399277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.
    Liang J; Edelsbrunner H; Woodward C
    Protein Sci; 1998 Sep; 7(9):1884-97. PubMed ID: 9761470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets.
    Ashford P; Moss DS; Alex A; Yeap SK; Povia A; Nobeli I; Williams MA
    BMC Bioinformatics; 2012 Mar; 13():39. PubMed ID: 22417279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of in silico and SAR studies to identify binding hot spots of Bcl-xL inhibitors.
    Levoin N; Vo DD; Gautier F; Barillé-Nion S; Juin P; Tasseau O; Grée R
    Bioorg Med Chem; 2015 Apr; 23(8):1747-57. PubMed ID: 25797160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes of the p53-binding cleft of MDM2 revealed by molecular dynamics simulations.
    Espinoza-Fonseca LM; Trujillo-Ferrara JG
    Biopolymers; 2006 Nov; 83(4):365-73. PubMed ID: 16817233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of protein functional surfaces by the concept of a split pocket.
    Tseng YY; Li WH
    Proteins; 2009 Sep; 76(4):959-76. PubMed ID: 19326458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface.
    Johnson DK; Karanicolas J
    PLoS Comput Biol; 2013; 9(3):e1002951. PubMed ID: 23505360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape variation in protein binding pockets and their ligands.
    Kahraman A; Morris RJ; Laskowski RA; Thornton JM
    J Mol Biol; 2007 Apr; 368(1):283-301. PubMed ID: 17337005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface.
    Metz A; Pfleger C; Kopitz H; Pfeiffer-Marek S; Baringhaus KH; Gohlke H
    J Chem Inf Model; 2012 Jan; 52(1):120-33. PubMed ID: 22087639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectivity by small-molecule inhibitors of protein interactions can be driven by protein surface fluctuations.
    Johnson DK; Karanicolas J
    PLoS Comput Biol; 2015 Feb; 11(2):e1004081. PubMed ID: 25706586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryptic-site binding mechanism of medium-sized Bcl-xL inhibiting compounds elucidated by McMD-based dynamic docking simulations.
    Bekker GJ; Fukuda I; Higo J; Fukunishi Y; Kamiya N
    Sci Rep; 2021 Mar; 11(1):5046. PubMed ID: 33658550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites.
    Kawabata T; Go N
    Proteins; 2007 Aug; 68(2):516-29. PubMed ID: 17444522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein hot spots: the islands of stability.
    Kuttner YY; Engel S
    J Mol Biol; 2012 Jan; 415(2):419-28. PubMed ID: 22100447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational approaches to identifying and characterizing protein binding sites for ligand design.
    Henrich S; Salo-Ahen OM; Huang B; Rippmann FF; Cruciani G; Wade RC
    J Mol Recognit; 2010; 23(2):209-19. PubMed ID: 19746440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function.
    Skolnick J; Gao M; Roy A; Srinivasan B; Zhou H
    Bioorg Med Chem Lett; 2015 Mar; 25(6):1163-70. PubMed ID: 25690787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches.
    Bansia H; Mahanta P; Yennawar NH; Ramakumar S
    J Chem Inf Model; 2021 Mar; 61(3):1322-1333. PubMed ID: 33570386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient pockets on XIAP-BIR2: toward the characterization of putative binding sites of small-molecule XIAP inhibitors.
    Eyrisch S; Medina-Franco JL; Helms V
    J Mol Model; 2012 May; 18(5):2031-42. PubMed ID: 21877153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.