These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17602765)

  • 1. The local threshold for geographical spread of infectious diseases between farms.
    Boender GJ; Meester R; Gies E; De Jong MC
    Prev Vet Med; 2007 Nov; 82(1-2):90-101. PubMed ID: 17602765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk maps for the spread of highly pathogenic avian influenza in poultry.
    Boender GJ; Hagenaars TJ; Bouma A; Nodelijk G; Elbers AR; de Jong MC; van Boven M
    PLoS Comput Biol; 2007 Apr; 3(4):e71. PubMed ID: 17447838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spread of avian influenza in The Netherlands: identifying areas at high risk.
    Boender GJ; Elbers AR; de Jong MC
    Vet Ital; 2007; 43(3):605-9. PubMed ID: 20422539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission risks and control of foot-and-mouth disease in The Netherlands: spatial patterns.
    Boender GJ; van Roermund HJ; de Jong MC; Hagenaars TJ
    Epidemics; 2010 Mar; 2(1):36-47. PubMed ID: 21352775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foot and mouth disease virus transmission during the incubation period of the disease in piglets, lambs, calves, and dairy cows.
    Orsel K; Bouma A; Dekker A; Stegeman JA; de Jong MC
    Prev Vet Med; 2009 Feb; 88(2):158-63. PubMed ID: 18929417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of spatial mixing in the spread of foot-and-mouth disease.
    Chowell G; Rivas AL; Hengartner NW; Hyman JM; Castillo-Chavez C
    Prev Vet Med; 2006 Mar; 73(4):297-314. PubMed ID: 16290298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of classical swine fever epidemics and control. I. General concepts and description of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):187-98. PubMed ID: 15908147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness of movement-prevention regulations to reduce the spread of foot-and-mouth disease in The Netherlands.
    Velthuis AG; Mourits MC
    Prev Vet Med; 2007 Dec; 82(3-4):262-81. PubMed ID: 17628726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical parameters for modelling the spread of foot-and-mouth disease in wildlife.
    Highfield LD; Ward MP; Laffan SW; Norby B; Wagner GG
    Epidemiol Infect; 2010 Jan; 138(1):125-38. PubMed ID: 19480725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploratory spatial analysis of Aujeszky's disease during four phases of the eradication programme in Catalonia, Spain (2003-2007).
    Allepuz A; Saez M; Alba A; Napp S; Casal J
    Prev Vet Med; 2008 Aug; 86(1-2):164-75. PubMed ID: 18562026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of exposure intensity on the efficiency and speed of transmission of Foot-and-mouth disease.
    Quan M; Murphy CM; Zhang Z; Durand S; Esteves I; Doel C; Alexandersen S
    J Comp Pathol; 2009 May; 140(4):225-37. PubMed ID: 19215941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling foot and mouth disease.
    Thornley JH; France J
    Prev Vet Med; 2009 Jun; 89(3-4):139-54. PubMed ID: 19328567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of neighbourhood definitions on spatio-temporal models of disease outbreaks: Separation distance versus range overlap.
    Laffan SW; Wang Z; Ward MP
    Prev Vet Med; 2011 Dec; 102(3):218-29. PubMed ID: 21856028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of backyard poultry flocks in the epidemic of highly pathogenic avian influenza virus (H7N7) in the Netherlands in 2003.
    Bavinck V; Bouma A; van Boven M; Bos ME; Stassen E; Stegeman JA
    Prev Vet Med; 2009 Apr; 88(4):247-54. PubMed ID: 19178969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation of classical swine fever epidemics and control. II. Validation of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):199-205. PubMed ID: 15939558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geostatistical visualisation and spatial statistics for evaluation of the dispersion of epidemic highly pathogenic avian influenza subtype H5N1.
    Ward MP; Maftei D; Apostu C; Suru A
    Vet Res; 2008; 39(3):22. PubMed ID: 18252188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential impact of an introduction of foot-and-mouth disease into the California State Fair.
    Carpenter TE; Christiansen LE; Dickey BF; Thunes C; Hullinger PJ
    J Am Vet Med Assoc; 2007 Oct; 231(8):1231-5. PubMed ID: 17937554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating the spatial dynamics of foot and mouth disease outbreaks in feral pigs and livestock in Queensland, Australia, using a susceptible-infected-recovered cellular automata model.
    Doran RJ; Laffan SW
    Prev Vet Med; 2005 Aug; 70(1-2):133-52. PubMed ID: 15967247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling spatial and temporal transmission of foot-and-mouth disease in France: identification of high-risk areas.
    Le Menach A; Legrand J; Grais RF; Viboud C; Valleron AJ; Flahault A
    Vet Res; 2005; 36(5-6):699-712. PubMed ID: 16120246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of a time-varying force of infection and basic reproduction number with application to an outbreak of classical swine fever.
    Howard SC; Donnelly CA
    J Epidemiol Biostat; 2000; 5(3):161-8. PubMed ID: 11051112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.