BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 17602807)

  • 1. Cyclic loading causes faster rupture and strain rate than static loading in medial collateral ligament at high stress.
    Thornton GM; Schwab TD; Oxland TR
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):932-40. PubMed ID: 17602807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue is more damaging than creep in ligament revealed by modulus reduction and residual strength.
    Thornton GM; Schwab TD; Oxland TR
    Ann Biomed Eng; 2007 Oct; 35(10):1713-21. PubMed ID: 17629791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model.
    Thornton GM; Shrive NG; Frank CB
    J Orthop Res; 2002 Sep; 20(5):967-74. PubMed ID: 12382961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the fatigue behavior of the medial collateral ligament utilizing traditional and novel mechanical variables for the assessment of damage accumulation.
    Zec ML; Thistlethwaite P; Frank CB; Shrive NG
    J Biomech Eng; 2010 Jan; 132(1):011001. PubMed ID: 20524739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Healing ligaments have decreased cyclic modulus compared to normal ligaments and immobilization further compromises healing ligament response to cyclic loading.
    Thornton GM; Shrive NG; Frank CB
    J Orthop Res; 2003 Jul; 21(4):716-22. PubMed ID: 12798073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressive compared with tensile loading of medial collateral ligament scar in vitro uniquely influences mRNA levels for aggrecan, collagen type II, and collagenase.
    Majima T; Marchuk LL; Sciore P; Shrive NG; Frank CB; Hart DA
    J Orthop Res; 2000 Jul; 18(4):524-31. PubMed ID: 11052487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cyclic stretching on the tensile properties of patellar tendon and medial collateral ligament in rat.
    Su WR; Chen HH; Luo ZP
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):911-7. PubMed ID: 18485553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament.
    Thornton GM; Oliynyk A; Frank CB; Shrive NG
    J Orthop Res; 1997 Sep; 15(5):652-6. PubMed ID: 9420592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early medial collateral ligament scars have inferior creep behaviour.
    Thornton GM; Leask GP; Shrive NG; Frank CB
    J Orthop Res; 2000 Mar; 18(2):238-46. PubMed ID: 10815824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading.
    Bonifasi-Lista C; Lake SP; Small MS; Weiss JA
    J Orthop Res; 2005 Jan; 23(1):67-76. PubMed ID: 15607877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains.
    Hsieh AH; Tsai CM; Ma QJ; Lin T; Banes AJ; Villarreal FJ; Akeson WH; Sung KL
    J Orthop Res; 2000 Mar; 18(2):220-7. PubMed ID: 10815822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Healing ligaments have shorter lifetime and greater strain rate during fatigue than creep at functional stresses.
    Thornton GM; Bailey SJ
    J Biomech Eng; 2013 Sep; 135(9):91004. PubMed ID: 23775365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament--a functional tissue engineering study in rabbits.
    Musahl V; Abramowitch SD; Gilbert TW; Tsuda E; Wang JH; Badylak SF; Woo SL
    J Orthop Res; 2004 Jan; 22(1):214-20. PubMed ID: 14656683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft-tissue "flaws" are associated with the material properties of the healing rabbit medial collateral ligament.
    Shrive N; Chimich D; Marchuk L; Wilson J; Brant R; Frank C
    J Orthop Res; 1995 Nov; 13(6):923-9. PubMed ID: 8544030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altering ligament water content affects ligament pre-stress and creep behaviour.
    Thornton GM; Shrive NG; Frank CB
    J Orthop Res; 2001 Sep; 19(5):845-51. PubMed ID: 11562131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A constitutive law for the failure behavior of medial collateral ligaments.
    De Vita R; Slaughter WS
    Biomech Model Mechanobiol; 2007 Apr; 6(3):189-97. PubMed ID: 16933127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pregnancy affects cellular activity, but not tissue mechanical properties, in the healing rabbit medial collateral ligament.
    Hart DA; Reno C; Frank CB; Shrive NG
    J Orthop Res; 2000 May; 18(3):462-71. PubMed ID: 10937635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative effects of monopolar radiofrequency energy and conservative management of mechanical properties of elongated lateral collateral ligament in rabbits: an experimental study.
    Ilhami K; Eray BM; Gokhan M; Ulukan I; Levent A
    Clin Biomech (Bristol, Avon); 2004 Feb; 19(2):184-9. PubMed ID: 14967582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization increases the vulnerability of rabbit medial collateral ligament autografts to creep.
    Boorman RS; Shrive NG; Frank CB
    J Orthop Res; 1998 Nov; 16(6):682-9. PubMed ID: 9877392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraoperative graft tensioning alters viscoelastic but not failure behaviours of rabbit medial collateral ligament autografts.
    King GJ; Edwards P; Brant RF; Shrive NG; Frank CB
    J Orthop Res; 1995 Nov; 13(6):915-22. PubMed ID: 8544029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.