BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 17603111)

  • 1. Shs1 plays separable roles in septin organization and cytokinesis in Saccharomyces cerevisiae.
    Iwase M; Luo J; Bi E; Toh-e A
    Genetics; 2007 Sep; 177(1):215-29. PubMed ID: 17603111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae.
    Finnigan GC; Takagi J; Cho C; Thorner J
    Genetics; 2015 Jul; 200(3):821-41. PubMed ID: 25971665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae.
    Versele M; Gullbrand B; Shulewitz MJ; Cid VJ; Bahmanyar S; Chen RE; Barth P; Alber T; Thorner J
    Mol Biol Cell; 2004 Oct; 15(10):4568-83. PubMed ID: 15282341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation.
    Garcia G; Bertin A; Li Z; Song Y; McMurray MA; Thorner J; Nogales E
    J Cell Biol; 2011 Dec; 195(6):993-1004. PubMed ID: 22144691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bni5p, a septin-interacting protein, is required for normal septin function and cytokinesis in Saccharomyces cerevisiae.
    Lee PR; Song S; Ro HS; Park CJ; Lippincott J; Li R; Pringle JR; De Virgilio C; Longtine MS; Lee KS
    Mol Cell Biol; 2002 Oct; 22(19):6906-20. PubMed ID: 12215547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae.
    Finnigan GC; Booth EA; Duvalyan A; Liao EN; Thorner J
    Genetics; 2015 Jul; 200(3):843-62. PubMed ID: 25971666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4.
    Versele M; Thorner J
    J Cell Biol; 2004 Mar; 164(5):701-15. PubMed ID: 14993234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast.
    Johnson CR; Steingesser MG; Weems AD; Khan A; Gladfelter A; Bertin A; McMurray MA
    Elife; 2020 Jan; 9():. PubMed ID: 31990274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell cycle control of septin ring dynamics in the budding yeast.
    Cid VCJ; Adamiková L; Sánchez M; Molina MA; Nombela C
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1437-1450. PubMed ID: 11390675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-order septin assembly is driven by GTP-promoted conformational changes: evidence from unbiased mutational analysis in Saccharomyces cerevisiae.
    Weems AD; Johnson CR; Argueso JL; McMurray MA
    Genetics; 2014 Mar; 196(3):711-27. PubMed ID: 24398420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae.
    Pablo-Hernando ME; Arnaiz-Pita Y; Tachikawa H; del Rey F; Neiman AM; Vázquez de Aldana CR
    BMC Cell Biol; 2008 Oct; 9():55. PubMed ID: 18826657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function.
    Casamayor A; Snyder M
    Mol Cell Biol; 2003 Apr; 23(8):2762-77. PubMed ID: 12665577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic role of nucleotides and lipids for the self-assembly of Shs1 septin oligomers.
    Taveneau C; Blanc R; Péhau-Arnaudet G; Di Cicco A; Bertin A
    Biochem J; 2020 Jul; 477(14):2697-2714. PubMed ID: 32726433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anillin-related region of Bud4 is the major functional determinant for Bud4's function in septin organization during bud growth and axial bud site selection in budding yeast.
    Wu H; Guo J; Zhou YT; Gao XD
    Eukaryot Cell; 2015 Mar; 14(3):241-51. PubMed ID: 25576483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation-dependent regulation of septin dynamics during the cell cycle.
    Dobbelaere J; Gentry MS; Hallberg RL; Barral Y
    Dev Cell; 2003 Mar; 4(3):345-57. PubMed ID: 12636916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Septin stability and recycling during dynamic structural transitions in cell division and development.
    McMurray MA; Thorner J
    Curr Biol; 2008 Aug; 18(16):1203-8. PubMed ID: 18701287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of septin amphipathic helices in sensing membrane-curvature and filament bundling.
    Woods BL; Cannon KS; Vogt EJD; Crutchley JM; Gladfelter AS
    Mol Biol Cell; 2021 Oct; 32(20):br5. PubMed ID: 34319771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The LKB1-like Kinase Elm1 Controls Septin Hourglass Assembly and Stability by Regulating Filament Pairing.
    Marquardt J; Yao LL; Okada H; Svitkina T; Bi E
    Curr Biol; 2020 Jun; 30(12):2386-2394.e4. PubMed ID: 32386534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization.
    Bertin A; McMurray MA; Thai L; Garcia G; Votin V; Grob P; Allyn T; Thorner J; Nogales E
    J Mol Biol; 2010 Dec; 404(4):711-31. PubMed ID: 20951708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation-dependent septin interaction of Bni5 is important for cytokinesis.
    Nam SC; Sung H; Kang SH; Joo JY; Lee SJ; Chung YB; Lee CK; Song S
    J Microbiol; 2007 Jun; 45(3):227-33. PubMed ID: 17618228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.