These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17603131)

  • 1. Effects of insoles and additional shock absorption foam on the cushioning properties of sport shoes.
    Chiu HT; Shiang TY
    J Appl Biomech; 2007 May; 23(2):119-27. PubMed ID: 17603131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Grading of the functional sport shoe parameter "cushioning" and "forefoot flexibility" on running shoes].
    Kleindienst FI; Krabbe B; Walther M; Brüggemann GP
    Sportverletz Sportschaden; 2006 Mar; 20(1):19-24. PubMed ID: 16544212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.
    Even-Tzur N; Weisz E; Hirsch-Falk Y; Gefen A
    Biomed Mater Eng; 2006; 16(5):289-99. PubMed ID: 17075164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of a custom-built portable impact-testing device for assessing the cushioning properties of athletic socks.
    Blackmore T; Jessop D; Bruce-Low S; Scurr J
    J Appl Biomech; 2013 Dec; 29(6):824-31. PubMed ID: 24482259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging of running shoes and its effect on mechanical and biomechanical variables: implications for runners.
    Chambon N; Sevrez V; Ly QH; Guéguen N; Berton E; Rao G
    J Sports Sci; 2014; 32(11):1013-22. PubMed ID: 24576090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heel-shoe interactions and the durability of EVA foam running-shoe midsoles.
    Verdejo R; Mills NJ
    J Biomech; 2004 Sep; 37(9):1379-86. PubMed ID: 15275845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and perception of basketball landing in various heights and footwear cushioning.
    Wei Q; Wang Z; Woo J; Liebenberg J; Park SK; Ryu J; Lam WK
    PLoS One; 2018; 13(8):e0201758. PubMed ID: 30092009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The shock attenuation characteristics of four different insoles when worn in a military boot during running and marching.
    Windle CM; Gregory SM; Dixon SJ
    Gait Posture; 1999 Mar; 9(1):31-7. PubMed ID: 10575068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A test of the metabolic cost of cushioning hypothesis during unshod and shod running.
    Tung KD; Franz JR; Kram R
    Med Sci Sports Exerc; 2014 Feb; 46(2):324-9. PubMed ID: 24441213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Durability of running shoes with ethylene vinyl acetate or polyurethane midsoles.
    Wang L; Hong Y; Li JX
    J Sports Sci; 2012 Dec; 30(16):1787-92. PubMed ID: 22967232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A one year aging process of a soccer shoe does not increase plantar loading of the foot during soccer specific movements].
    Eils E; Streyl M
    Sportverletz Sportschaden; 2005 Sep; 19(3):140-5. PubMed ID: 16167267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cushioning and lateral stability functions of cloth sport shoes.
    Fong DT; Hong Y; Li JX
    Sports Biomech; 2007 Sep; 6(3):407-17. PubMed ID: 17933201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of shoe wearing time and midsole hardness on ground reaction forces, ankle stability and perceived comfort in basketball landing.
    Lam WK; Liu H; Wu GQ; Liu ZL; Sun W
    J Sports Sci; 2019 Oct; 37(20):2347-2355. PubMed ID: 31221050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of plantar heel pressures: Insole design using finite element analysis.
    Goske S; Erdemir A; Petre M; Budhabhatti S; Cavanagh PR
    J Biomech; 2006; 39(13):2363-70. PubMed ID: 16197952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shoe cushioning reduces impact and muscle activation during landings from unexpected, but not self-initiated, drops.
    Fu W; Fang Y; Gu Y; Huang L; Li L; Liu Y
    J Sci Med Sport; 2017 Oct; 20(10):915-920. PubMed ID: 28385562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of two insole materials using subjective parameters and pedobarography (pedar-system).
    Pawelka S; Kopf A; Zwick E; Bhm T; Kranzl A
    Clin Biomech (Bristol, Avon); 1997 Apr; 12(3):S6-S7. PubMed ID: 11415703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of various midsole densities of basketball shoes on impact attenuation during landing activities.
    Zhang S; Clowers K; Kohstall C; Yu YJ
    J Appl Biomech; 2005 Feb; 21(1):3-17. PubMed ID: 16131701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boot-insole effects on comfort and plantar loading at the heel and fifth metatarsal during running and turning in soccer.
    Nunns MP; Dixon SJ; Clarke J; Carré M
    J Sports Sci; 2016; 34(8):730-7. PubMed ID: 26197986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical response to systematic changes in impact interface cushioning properties while performing a tennis-specific movement.
    Stiles V; Dixon S
    J Sports Sci; 2007 Sep; 25(11):1229-39. PubMed ID: 17654235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of viscoelastic shoe insoles on vertical impact forces in heel-toe running.
    Nigg BM; Herzog W; Read LJ
    Am J Sports Med; 1988; 16(1):70-6. PubMed ID: 3278635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.