These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17603208)

  • 41. Three new lignan glycosides from the fruits of Forsythia suspense.
    Yan XJ; Peng Y; Liu ZX; Wen J; Liu QB; Li LZ; Song SJ
    J Asian Nat Prod Res; 2014; 16(6):602-10. PubMed ID: 24835080
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three new labdane-type diterpene glycosides from fruits of Rubus chingii and their cytotoxic activities against five humor cell lines.
    Zhong R; Guo Q; Zhou G; Fu H; Wan K
    Fitoterapia; 2015 Apr; 102():23-6. PubMed ID: 25598186
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cucurbitane, hexanorcucurbitane and octanorcucurbitane glycosides from fruits of Trichosanthes tricuspidata.
    Kanchanapoom T; Kasai R; Yamasaki K
    Phytochemistry; 2002 Jan; 59(2):215-28. PubMed ID: 11809458
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Berchemiosides A-C, 2-Acetoxy-ω-phenylpentaene Fatty Acid Triglycosides from the Unripe Fruits of Berchemia berchemiifolia.
    Kang KB; Park EJ; Kim J; Sung SH
    J Nat Prod; 2017 Oct; 80(10):2778-2786. PubMed ID: 28972762
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cucurbitane triterpenes from Hemsleya chinensis tubers and their anti-inflammatory activities.
    Lian F; Chi J; Meng Q; Li Q; Chen A; Wang Z; Dai L
    Fitoterapia; 2023 Apr; 166():105441. PubMed ID: 36736744
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cucurbitane-Type Triterpene Glycosides from Momordica charantia and Their α-Glucosidase Inhibitory Activities.
    Gao Y; Chen JC; Peng XR; Li ZR; Su HG; Qiu MH
    Nat Prod Bioprospect; 2020 Jun; 10(3):153-161. PubMed ID: 32378043
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new eremophilane glycoside from the fruits of Physalis pubescens and its cytotoxic activity.
    Xia G; Huang Y; Xia M; Wang L; Kang N; Ding L; Chen L; Qiu F
    Nat Prod Res; 2017 Dec; 31(23):2737-2744. PubMed ID: 28278627
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flavonol glycosides from the fruits of Evodia rutaecarpa.
    Liu SS; Dai YT; Sui F; Chen LM; Yan LH; Zhang QW; Wang ZM
    J Asian Nat Prod Res; 2018 Sep; 20(9):867-874. PubMed ID: 29110534
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myrseguinosides A-E, five new glycosides from the fruits of Myrsine seguinii.
    Matsunami K; Otsuka H; Takeda Y
    Chem Pharm Bull (Tokyo); 2011; 59(10):1274-80. PubMed ID: 21963638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Potential anti-gout constituents as xanthine oxidase inhibitor from the fruits of Stauntonia brachyanthera.
    Liu D; Wang D; Yang W; Meng D
    Bioorg Med Chem; 2017 Jul; 25(13):3562-3566. PubMed ID: 28511908
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Triterpene glycosides from the aerial parts of Larrea tridentata.
    Jitsuno M; Mimaki Y
    Phytochemistry; 2010 Dec; 71(17-18):2157-67. PubMed ID: 20980032
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Systematic identification of flavonols, flavonol glycosides, triterpene and siraitic acid glycosides from Siraitia grosvenorii using high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry combined with a screening strategy.
    Qing ZX; Zhao H; Tang Q; Mo CM; Huang P; Cheng P; Yang P; Yang XY; Liu XB; Zheng YJ; Zeng JG
    J Pharm Biomed Anal; 2017 May; 138():240-248. PubMed ID: 28226282
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two new glycosides from the fruits of Forsythia suspense.
    Yan XJ; Bai XY; Liu QB; Liu S; Gao PY; Li LZ; Song SJ
    J Asian Nat Prod Res; 2014; 16(4):376-82. PubMed ID: 24506327
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cytotoxic triterpene diglycosides from the sea cucumber Stichopus horrens.
    Cuong NX; Vien LT; Hoang L; Hanh TTH; Thao DT; Thanh NV; Nam NH; Thung DC; Kiem PV; Minh CV
    Bioorg Med Chem Lett; 2017 Jul; 27(13):2939-2942. PubMed ID: 28512032
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytotoxicity of pregnane glycosides of Cynanchum otophyllum.
    Zhang M; Li X; Xiang C; Qin Y; He J; Li BC; Li P
    Steroids; 2015 Dec; 104():49-60. PubMed ID: 26297951
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cucurbitane-type triterpene glycosides from the fruits of Momordica charantia.
    Nguyen XN; Phan VK; Chau VM; Ninh KB; Nguyen XC; Le MH; Bui HT; Tran HQ; Nguyen HT; Kim YH
    Magn Reson Chem; 2010 May; 48(5):392-6. PubMed ID: 20225243
    [TBL] [Abstract][Full Text] [Related]  

  • 57. C21 steroidal glycosides with cytotoxic activities from Cynanchum otophyllum.
    Dong J; Peng X; Li L; Lu S; Zhou L; Qiu M
    Bioorg Med Chem Lett; 2018 May; 28(9):1520-1524. PubMed ID: 29625825
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cucurbitane-type triterpenoids from the stems and leaves of Momordica charantia.
    Zhao GT; Liu JQ; Deng YY; Li HZ; Chen JC; Zhang ZR; Zhou L; Qiu MH
    Fitoterapia; 2014 Jun; 95():75-82. PubMed ID: 24631764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical constituents from the fruits of Gardenia jasminoides Ellis.
    Yu Y; Feng XL; Gao H; Xie ZL; Dai Y; Huang XJ; Kurihara H; Ye WC; Zhong Y; Yao XS
    Fitoterapia; 2012 Apr; 83(3):563-7. PubMed ID: 22245087
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cytotoxic sulfated triterpene glycosides from the sea cucumber Pseudocolochirus violaceus.
    Zhang SY; Yi YH; Tang HF
    Chem Biodivers; 2006 Jul; 3(7):807-17. PubMed ID: 17193313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.