These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 17603528)
1. Playing with carbon and silicon at the nanoscale. Mélinon P; Masenelli B; Tournus F; Perez A Nat Mater; 2007 Jul; 6(7):479-90. PubMed ID: 17603528 [TBL] [Abstract][Full Text] [Related]
2. Molecular template assisted growth of ultrathin silicon carbide nanowires with strong green light emission and excellent field-emission properties. Xi G; He Y; Wang C Chemistry; 2010 May; 16(17):5184-90. PubMed ID: 20309964 [TBL] [Abstract][Full Text] [Related]
3. Do all wurtzite nanotubes prefer faceted ones? Li Y; Zhou Z; Chen Y; Chen Z J Chem Phys; 2009 May; 130(20):204706. PubMed ID: 19485474 [TBL] [Abstract][Full Text] [Related]
5. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Capek I Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856 [TBL] [Abstract][Full Text] [Related]
6. Controlled nanoscale doping of semiconductors via molecular monolayers. Ho JC; Yerushalmi R; Jacobson ZA; Fan Z; Alley RL; Javey A Nat Mater; 2008 Jan; 7(1):62-7. PubMed ID: 17994026 [TBL] [Abstract][Full Text] [Related]
7. Novel silicon-carbon fullerene-like nanostructures: an Ab initio study on the stability of Si54C6 and Si60C6 clusters. Srinivasan A; Ray AK J Nanosci Nanotechnol; 2006 Jan; 6(1):43-53. PubMed ID: 16573068 [TBL] [Abstract][Full Text] [Related]
8. From pure C(60) to silicon carbon fullerene-based nanotube: an ab initio study. Li J; Xia Y; Zhao M; Liu X; Song C; Li L; Li F J Chem Phys; 2008 Apr; 128(15):154719. PubMed ID: 18433270 [TBL] [Abstract][Full Text] [Related]
9. Silicon carbide nanostructures: a tight binding approach. Patrick AD; Dong X; Allison TC; Blaisten-Barojas E J Chem Phys; 2009 Jun; 130(24):244704. PubMed ID: 19566171 [TBL] [Abstract][Full Text] [Related]
10. Electronic transport in nanometre-scale silicon-on-insulator membranes. Zhang P; Tevaarwerk E; Park BN; Savage DE; Celler GK; Knezevic I; Evans PG; Eriksson MA; Lagally MG Nature; 2006 Feb; 439(7077):703-6. PubMed ID: 16467833 [TBL] [Abstract][Full Text] [Related]
11. The synthesis of twinned silicon carbide nanowires by a catalyst-free pyrolytic deposition technique. Li J; Zhu X; Ding P; Chen Y Nanotechnology; 2009 Apr; 20(14):145602. PubMed ID: 19420530 [TBL] [Abstract][Full Text] [Related]
12. The synthesis of titanium carbide-reinforced carbon nanofibers. Zhu P; Hong Y; Liu B; Zou G Nanotechnology; 2009 Jun; 20(25):255603. PubMed ID: 19491464 [TBL] [Abstract][Full Text] [Related]
13. Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio. Pan H; Feng YP ACS Nano; 2008 Nov; 2(11):2410-4. PubMed ID: 19206409 [TBL] [Abstract][Full Text] [Related]
15. Focused ion beam-assisted manipulation of single and double beta-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-omega method. Lee KM; Choi TY; Lee SK; Poulikakos D Nanotechnology; 2010 Mar; 21(12):125301. PubMed ID: 20195013 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of Si and SiO(x) into diamond-like carbon films: impact on surface properties and osteoblast adhesion. Randeniya LK; Bendavid A; Martin PJ; Amin MS; Preston EW; Magdon Ismail FS; Coe S Acta Biomater; 2009 Jun; 5(5):1791-7. PubMed ID: 19233753 [TBL] [Abstract][Full Text] [Related]
19. Computational nanomechanics and thermal transport in nanotubes and nanowires. Srivastava D; Makeev MA; Menon M; Osman M J Nanosci Nanotechnol; 2008 Jul; 8(7):3628-51. PubMed ID: 19051922 [TBL] [Abstract][Full Text] [Related]
20. Photoelectron spectroscopy of lanthanide-silicon cluster anions LnSi(n)(-) (3 Grubisic A; Ko YJ; Wang H; Bowen KH J Am Chem Soc; 2009 Aug; 131(30):10783-90. PubMed ID: 19580263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]