These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17603565)

  • 1. Influence of electrode composition on the second-order nonlinearity profile in thermally poled silica glass.
    Kudlinski A; Martinelli G; Quiquempois Y
    Opt Lett; 2007 Jul; 32(13):1773-5. PubMed ID: 17603565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the chi(2) susceptibility time-evolution in thermally poled fused silica.
    Kudlinski A; Quiquempois Y; Martinelli G
    Opt Express; 2005 Oct; 13(20):8015-24. PubMed ID: 19498831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time evolution of the second-order nonlinear distribution of poled Infrasil samples during annealing experiments.
    Quiquempois Y; Kudlinski A; Martinelli G; Quintero GA; Gouvea PM; Carvalho IC; Margulis W
    Opt Express; 2006 Dec; 14(26):12984-93. PubMed ID: 19532192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large optical second-order nonlinearity of poled WO3-TeO2 glass.
    Tanaka K; Narazaki A; Hirao K
    Opt Lett; 2000 Feb; 25(4):251-3. PubMed ID: 18059845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creating second-order nonlinearity in pure synthetic silica optical fibers by thermal poling.
    An H; Fleming S
    Opt Lett; 2007 Apr; 32(7):832-4. PubMed ID: 17339952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time evolution of second-order nonlinear profiles induced within thermally poled silica samples.
    Kudlinski A; Martinelli G; Quiquempois Y
    Opt Lett; 2005 May; 30(9):1039-41. PubMed ID: 15906996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures.
    Yadav K; Callender CL; Smelser CW; Ledderhof C; Blanchetiere C; Jacob S; Albert J
    Opt Express; 2011 Dec; 19(27):26975-83. PubMed ID: 22274281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humidity effect on the decay of second-order nonlinearity in thermally poled fused silica.
    Chen HY; Chang FF; Liao JC; Chao S
    Opt Express; 2006 Dec; 14(25):12334-40. PubMed ID: 19529662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers.
    An H; Fleming S
    Opt Express; 2005 May; 13(9):3500-5. PubMed ID: 19495254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactivity of electro-thermally poled bioactive silicate glass.
    Mariappan CR; Yunos DM; Boccaccini AR; Roling B
    Acta Biomater; 2009 May; 5(4):1274-83. PubMed ID: 19097952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of thermally poled germanosilicate thin films.
    Ozcan A; Digonnet M; Kino G; Ay F; Aydinli A
    Opt Express; 2004 Oct; 12(20):4698-708. PubMed ID: 19484021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute measurement of the second-order nonlinearity profile in poled silica.
    Pureur D; Liu AC; Digonnet MJ; Kino GS
    Opt Lett; 1998 Apr; 23(8):588-90. PubMed ID: 18084585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of poling conditions on second-harmonic generation in fused silica.
    Takebe H; Kazansky PG; Russell PS; Morinaga K
    Opt Lett; 1996 Apr; 21(7):468-70. PubMed ID: 19865441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 200-m optical fiber with an integrated electrode and its poling.
    Lee K; Hu P; Blows JL; Thorncraft D; Baxter J
    Opt Lett; 2004 Sep; 29(18):2124-6. PubMed ID: 15460877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nondestructive method for characterization of the second-order nonlinear profile and charge distribution in thermally poled fused silica.
    de Chatellus HG; Montant S; Freysz E
    Opt Lett; 2000 Dec; 25(23):1723-5. PubMed ID: 18066326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second-harmonic generation of thermally poled chalcogenide glass.
    Guignard M; Nazabal V; Troles J; Smektala F; Zeghlache H; Quiquempois Y; Kudlinski A; Martinelli G
    Opt Express; 2005 Feb; 13(3):789-95. PubMed ID: 19494939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study of the origin of the second-order nonlinearities induced in thermally poled fused silica.
    Le Calvez A; Freysz E; Ducasse A
    Opt Lett; 1997 Oct; 22(20):1547-9. PubMed ID: 18188294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally stable and large second-order nonlinearity in poled silica films doped with Disperse Red 1 in high concentration.
    Hayashi H; Nakayama H; Sugihara O; Okamoto N
    Opt Lett; 1995 Nov; 20(22):2264. PubMed ID: 19865187
    [No Abstract]   [Full Text] [Related]  

  • 19. Giant Enhancement of Optical Second Harmonic in Poled Glasses by Cold Repoling.
    Reshetov I; Scherbak S; Tagantsev D; Zhurikhina V; Lipovskii A
    J Phys Chem Lett; 2022 Jun; 13(25):5932-5937. PubMed ID: 35731910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overcoming the impeding effect of core-cladding interface on the progression of the second-order nonlinearity in thermally poled optical fibers.
    An H; Fleming S
    Appl Opt; 2006 Aug; 45(24):6212-7. PubMed ID: 16892126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.