These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 17603891)
1. Requirement of histone deacetylase activity for the expression of critical photoreceptor genes. Chen B; Cepko CL BMC Dev Biol; 2007 Jun; 7():78. PubMed ID: 17603891 [TBL] [Abstract][Full Text] [Related]
2. Histone deacetylase activity regulates apaf-1 and caspase 3 expression in the developing mouse retina. Wallace DM; Donovan M; Cotter TG Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):2765-72. PubMed ID: 16799012 [TBL] [Abstract][Full Text] [Related]
3. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226 [TBL] [Abstract][Full Text] [Related]
4. FIZ1 is expressed during photoreceptor maturation, and synergizes with NRL and CRX at rod-specific promoters in vitro. Mali RS; Zhang X; Hoerauf W; Doyle D; Devitt J; Loffreda-Wren J; Mitton KP Exp Eye Res; 2007 Feb; 84(2):349-60. PubMed ID: 17141759 [TBL] [Abstract][Full Text] [Related]
5. The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Ashburner BP; Westerheide SD; Baldwin AS Mol Cell Biol; 2001 Oct; 21(20):7065-77. PubMed ID: 11564889 [TBL] [Abstract][Full Text] [Related]
6. Promoter specific sensitivity to inhibition of histone deacetylases: implications for hormonal gene control, cellular differentiation and cancer. Dressel U; Renkawitz R; Baniahmad A Anticancer Res; 2000; 20(2A):1017-22. PubMed ID: 10810390 [TBL] [Abstract][Full Text] [Related]
7. Multiple histone deacetylases repress tumor suppressor gene ARHI in breast cancer. Feng W; Lu Z; Luo RZ; Zhang X; Seto E; Liao WS; Yu Y Int J Cancer; 2007 Apr; 120(8):1664-8. PubMed ID: 17230502 [TBL] [Abstract][Full Text] [Related]
8. Gene expression changes during retinal development and rod specification. Mansergh FC; Carrigan M; Hokamp K; Farrar GJ Mol Vis; 2015; 21():61-87. PubMed ID: 25678762 [TBL] [Abstract][Full Text] [Related]
9. A histone deacetylation-dependent mechanism for transcriptional repression of the gap junction gene cx43 in prostate cancer cells. Hernandez M; Shao Q; Yang XJ; Luh SP; Kandouz M; Batist G; Laird DW; Alaoui-Jamali MA Prostate; 2006 Aug; 66(11):1151-61. PubMed ID: 16652385 [TBL] [Abstract][Full Text] [Related]
10. RETINA-specific expression of Kcnv2 is controlled by cone-rod homeobox (Crx) and neural retina leucine zipper (Nrl). Aslanidis A; Karlstetter M; Walczak Y; Jägle H; Langmann T Adv Exp Med Biol; 2014; 801():31-41. PubMed ID: 24664678 [TBL] [Abstract][Full Text] [Related]
11. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation. Peng GH; Chen S Hum Mol Genet; 2007 Oct; 16(20):2433-52. PubMed ID: 17656371 [TBL] [Abstract][Full Text] [Related]
12. Ontogenetic expression of the Otx2 and Crx homeobox genes in the retina of the rat. Rath MF; Morin F; Shi Q; Klein DC; Møller M Exp Eye Res; 2007 Jul; 85(1):65-73. PubMed ID: 17467693 [TBL] [Abstract][Full Text] [Related]
13. FIZ1 is part of the regulatory protein complex on active photoreceptor-specific gene promoters in vivo. Mali RS; Peng GH; Zhang X; Dang L; Chen S; Mitton KP BMC Mol Biol; 2008 Oct; 9():87. PubMed ID: 18854042 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis. Hao H; Kim DS; Klocke B; Johnson KR; Cui K; Gotoh N; Zang C; Gregorski J; Gieser L; Peng W; Fann Y; Seifert M; Zhao K; Swaroop A PLoS Genet; 2012; 8(4):e1002649. PubMed ID: 22511886 [TBL] [Abstract][Full Text] [Related]
15. Functional analysis of the rod photoreceptor cGMP phosphodiesterase alpha-subunit gene promoter: Nrl and Crx are required for full transcriptional activity. Pittler SJ; Zhang Y; Chen S; Mears AJ; Zack DJ; Ren Z; Swain PK; Yao S; Swaroop A; White JB J Biol Chem; 2004 May; 279(19):19800-7. PubMed ID: 15001570 [TBL] [Abstract][Full Text] [Related]
16. Cone-rod homeobox CRX controls presynaptic active zone formation in photoreceptors of mammalian retina. Assawachananont J; Kim SY; Kaya KD; Fariss R; Roger JE; Swaroop A Hum Mol Genet; 2018 Oct; 27(20):3555-3567. PubMed ID: 30084954 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of novel alternative splice variants of human SAMD11. Jin G; Long C; Liu W; Tang Y; Zhu Y; Zhou X; Ai Y; Zhang Q; Shen H Gene; 2013 Nov; 530(2):215-21. PubMed ID: 23978614 [TBL] [Abstract][Full Text] [Related]
18. Histone deacetylase activity in conjunction with E2F-1 and p53 regulates Apaf-1 expression in 661W cells and the retina. Wallace DM; Cotter TG J Neurosci Res; 2009 Mar; 87(4):887-905. PubMed ID: 18951482 [TBL] [Abstract][Full Text] [Related]
19. Plakoglobin is a new target gene of histone deacetylase in human fibrosarcoma HT1080 cells. Shim JS; Kim DH; Kwon HJ Oncogene; 2004 Mar; 23(9):1704-11. PubMed ID: 14661058 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of histone deacetylation by trichostatin A intensifies the transcriptions of neuronal c-fos and c-jun genes after kainate stimulation. Sng JC; Taniura H; Yoneda Y Neurosci Lett; 2005 Oct; 386(3):150-5. PubMed ID: 16002216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]