BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17603927)

  • 1. The current evidence for defective repair of oxidatively damaged DNA in Cockayne syndrome.
    Frosina G
    Free Radic Biol Med; 2007 Jul; 43(2):165-77. PubMed ID: 17603927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementation of the oxidatively damaged DNA repair defect in Cockayne syndrome A and B cells by Escherichia coli formamidopyrimidine DNA glycosylase.
    Ropolo M; Degan P; Foresta M; D'Errico M; Lasigliè D; Dogliotti E; Casartelli G; Zupo S; Poggi A; Frosina G
    Free Radic Biol Med; 2007 Jun; 42(12):1807-17. PubMed ID: 17512460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defective repair of 5-hydroxy-2'-deoxycytidine in Cockayne syndrome cells and its complementation by Escherichia coli formamidopyrimidine DNA glycosylase and endonuclease III.
    Foresta M; Ropolo M; Degan P; Pettinati I; Kow YW; Damonte G; Poggi A; Frosina G
    Free Radic Biol Med; 2010 Mar; 48(5):681-90. PubMed ID: 20026203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidatively damaged DNA repair defect in cockayne syndrome and its complementation by heterologous repair proteins.
    Frosina G
    Curr Med Chem; 2008; 15(10):940-53. PubMed ID: 18393852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary fibroblasts of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress.
    Tuo J; Jaruga P; Rodriguez H; Bohr VA; Dizdaroglu M
    FASEB J; 2003 Apr; 17(6):668-74. PubMed ID: 12665480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cockayne syndrome--a primary defect in DNA repair, transcription, both or neither?
    Friedberg EC
    Bioessays; 1996 Sep; 18(9):731-8. PubMed ID: 8831289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts.
    Spivak G; Hanawalt PC
    DNA Repair (Amst); 2006 Jan; 5(1):13-22. PubMed ID: 16129663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel splice site mutation in the Cockayne syndrome group A gene in two siblings with Cockayne syndrome.
    Kleppa L; Kanavin ØJ; Klungland A; Strømme P
    Neuroscience; 2007 Apr; 145(4):1397-406. PubMed ID: 17084038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased expression of p53 enhances transcription-coupled repair and global genomic repair of a UVC-damaged reporter gene in human cells.
    Dregoesc D; Rybak AP; Rainbow AJ
    DNA Repair (Amst); 2007 May; 6(5):588-601. PubMed ID: 17196445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired repair of ionizing radiation-induced DNA damage in Cockayne syndrome cells.
    Cramers P; Verhoeven EE; Filon AR; Rockx DA; Santos SJ; van der Leer AA; Kleinjans JC; van Zeeland AA; Mullenders LH
    Radiat Res; 2011 Apr; 175(4):432-43. PubMed ID: 21299404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of oxidatively generated DNA damage in Cockayne syndrome.
    Khobta A; Epe B
    Mech Ageing Dev; 2013; 134(5-6):253-60. PubMed ID: 23518175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced host cell reactivation of a UV-damaged reporter gene in pre-UV-treated cells is delayed in Cockayne syndrome cells.
    Pitsikas P; Francis MA; Rainbow AJ
    J Photochem Photobiol B; 2005 Nov; 81(2):89-97. PubMed ID: 16125967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between common genetic variation in Cockayne syndrome A and B genes and nucleotide excision repair capacity among smokers.
    Leng S; Bernauer A; Stidley CA; Picchi MA; Sheng X; Frasco MA; Van Den Berg D; Gilliland FD; Crowell RE; Belinsky SA
    Cancer Epidemiol Biomarkers Prev; 2008 Aug; 17(8):2062-9. PubMed ID: 18708399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial DNA repair genes and their eukaryotic homologues: 4. The role of nucleotide excision DNA repair (NER) system in mammalian cells.
    Maddukuri L; Dudzińska D; Tudek B
    Acta Biochim Pol; 2007; 54(3):469-82. PubMed ID: 17893751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights for understanding the transcription-coupled repair pathway.
    Sarasin A; Stary A
    DNA Repair (Amst); 2007 Feb; 6(2):265-9. PubMed ID: 17194629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of DNA lesions in chromosomal DNA impact of chromatin structure and Cockayne syndrome proteins.
    Fousteri M; van Hoffen A; Vargova H; Mullenders LH
    DNA Repair (Amst); 2005 Jul; 4(8):919-25. PubMed ID: 15961352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide excision repair and neurological diseases.
    Nouspikel T
    DNA Repair (Amst); 2008 Jul; 7(7):1155-67. PubMed ID: 18456575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An altered redox balance mediates the hypersensitivity of Cockayne syndrome primary fibroblasts to oxidative stress.
    Pascucci B; Lemma T; Iorio E; Giovannini S; Vaz B; Iavarone I; Calcagnile A; Narciso L; Degan P; Podo F; Roginskya V; Janjic BM; Van Houten B; Stefanini M; Dogliotti E; D'Errico M
    Aging Cell; 2012 Jun; 11(3):520-9. PubMed ID: 22404840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome.
    Hayashi M; Araki S; Kohyama J; Shioda K; Fukatsu R
    Brain Dev; 2005 Jan; 27(1):34-8. PubMed ID: 15626539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arresting transcription and sentencing the cell: the consequences of blocked transcription.
    McKay BC; Cabrita MA
    Mech Ageing Dev; 2013; 134(5-6):243-52. PubMed ID: 23542592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.