These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17604025)

  • 1. The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 degrees C.
    Huston WM; Swedberg JE; Harris JM; Walsh TP; Mathews SA; Timms P
    FEBS Lett; 2007 Jul; 581(18):3382-6. PubMed ID: 17604025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli.
    Kim KI; Park SC; Kang SH; Cheong GW; Chung CH
    J Mol Biol; 1999 Dec; 294(5):1363-74. PubMed ID: 10600391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the chaperone-like activity of HtrA (DegP) protein from Escherichia coli under the conditions of heat shock.
    Skorko-Glonek J; Laskowska E; Sobiecka-Szkatula A; Lipinska B
    Arch Biochem Biophys; 2007 Aug; 464(1):80-9. PubMed ID: 17485069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of temperature-induced bacterial HtrA activation.
    Kim DY; Kwon E; Shin YK; Kweon DH; Kim KK
    J Mol Biol; 2008 Mar; 377(2):410-20. PubMed ID: 18272173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic activation of Chlamydia trachomatis HTRA is mediated by PDZ1 domain interactions with protease domain loops L3 and LC and beta strand β5.
    Marsh JW; Lott WB; Tyndall JD; Huston WW
    Cell Mol Biol Lett; 2013 Dec; 18(4):522-37. PubMed ID: 24036669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA.
    Huston WM; Theodoropoulos C; Mathews SA; Timms P
    BMC Microbiol; 2008 Nov; 8():190. PubMed ID: 18986550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding pathway mediated by an intramolecular chaperone: the structural and functional characterization of the aqualysin I propeptide.
    Marie-Claire C; Yabuta Y; Suefuji K; Matsuzawa H; Shinde U
    J Mol Biol; 2001 Jan; 305(1):151-65. PubMed ID: 11114254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique residues involved in activation of the multitasking protease/chaperone HtrA from Chlamydia trachomatis.
    Huston WM; Tyndall JD; Lott WB; Stansfield SH; Timms P
    PLoS One; 2011; 6(9):e24547. PubMed ID: 21931748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-specific splicing of Omi stress-regulated endoprotease leads to an inactive protease with a modified PDZ motif.
    Faccio L; Fusco C; Viel A; Zervos AS
    Genomics; 2000 Sep; 68(3):343-7. PubMed ID: 10995577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural basis of mode of activation and functional diversity: a case study with HtrA family of serine proteases.
    Singh N; Kuppili RR; Bose K
    Arch Biochem Biophys; 2011 Dec; 516(2):85-96. PubMed ID: 22027029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the link between the redox state and enzymatic activity of the HtrA (DegP) protein from Escherichia coli.
    Koper T; Polit A; Sobiecka-Szkatula A; Wegrzyn K; Scire A; Figaj D; Kadzinski L; Zarzecka U; Zurawa-Janicka D; Banecki B; Lesner A; Tanfani F; Lipinska B; Skorko-Glonek J
    PLoS One; 2015; 10(2):e0117413. PubMed ID: 25710793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-induced conformational changes within the regulatory loops L1-L2-LA of the HtrA heat-shock protease from Escherichia coli.
    Sobiecka-Szkatula A; Polit A; Scire A; Gieldon A; Tanfani F; Szkarlat Z; Ciarkowski J; Zurawa-Janicka D; Skorko-Glonek J; Lipinska B
    Biochim Biophys Acta; 2009 Nov; 1794(11):1573-82. PubMed ID: 19615474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The HtrA family of proteases: implications for protein composition and cell fate.
    Clausen T; Southan C; Ehrmann M
    Mol Cell; 2002 Sep; 10(3):443-55. PubMed ID: 12408815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamic acid residues in the C-terminal extension of small heat shock protein 25 are critical for structural and functional integrity.
    Morris AM; Treweek TM; Aquilina JA; Carver JA; Walker MJ
    FEBS J; 2008 Dec; 275(23):5885-98. PubMed ID: 19021764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of HtrA family proteins, the key players in protein quality control.
    Kim DY; Kim KK
    J Biochem Mol Biol; 2005 May; 38(3):266-74. PubMed ID: 15943900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms for multitasking: recent crystal structures of moonlighting proteins.
    Jeffery CJ
    Curr Opin Struct Biol; 2004 Dec; 14(6):663-8. PubMed ID: 15582389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. the active site residue V266 of Chlamydial HtrA is critical for substrate binding during both in vitro and in vivo conditions.
    Gloeckl S; Tyndall JD; Stansfield SH; Timms P; Huston WM
    J Mol Microbiol Biotechnol; 2012; 22(1):10-6. PubMed ID: 22353774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the protease domain of a heat-shock protein HtrA from Thermotoga maritima.
    Kim DY; Kim DR; Ha SC; Lokanath NK; Lee CJ; Hwang HY; Kim KK
    J Biol Chem; 2003 Feb; 278(8):6543-51. PubMed ID: 12458220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia.
    Faccio L; Fusco C; Chen A; Martinotti S; Bonventre JV; Zervos AS
    J Biol Chem; 2000 Jan; 275(4):2581-8. PubMed ID: 10644717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of disulfide exchange between DsbA and HtrA proteins from Escherichia coli.
    Skórko-Glonek J; Sobiecka-Szkatuła A; Lipińska B
    Acta Biochim Pol; 2006; 53(3):585-9. PubMed ID: 17019443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.