These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 17604165)

  • 1. Low-cost supports used to immobilize fungi and reliable technique for removal hexavalent chromium in wastewater.
    Li H; Liu T; Li Z; Deng L
    Bioresour Technol; 2008 May; 99(7):2234-41. PubMed ID: 17604165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads.
    Li H; Li Z; Liu T; Xiao X; Peng Z; Deng L
    Bioresour Technol; 2008 Sep; 99(14):6271-9. PubMed ID: 18221868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the biosorption of hexavalent chromium from aqueous solutions by using boiled mucilaginous seeds of Ocimum americanum.
    Lakshmanraj L; Gurusamy A; Gobinath MB; Chandramohan R
    J Hazard Mater; 2009 Sep; 169(1-3):1141-5. PubMed ID: 19406568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium(III) removal from water and wastewater using a carboxylate-functionalized cation exchanger prepared from a lignocellulosic residue.
    Anirudhan TS; Radhakrishnan PG
    J Colloid Interface Sci; 2007 Dec; 316(2):268-76. PubMed ID: 17905262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous adsorption and recovery of Cr(VI) in different types of reactors.
    Bai SR; Abraham TE
    Biotechnol Prog; 2005; 21(6):1692-9. PubMed ID: 16321053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective adsorption and separation of chromium (VI) on the magnetic iron-nickel oxide from waste nickel liquid.
    Wei L; Yang G; Wang R; Ma W
    J Hazard Mater; 2009 May; 164(2-3):1159-63. PubMed ID: 18954940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lifetime and regeneration of immobilized titania for photocatalytic removal of aqueous hexavalent chromium.
    Tuprakay S; Liengcharernsit W
    J Hazard Mater; 2005 Sep; 124(1-3):53-8. PubMed ID: 16046253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling, simulation, and experimental validation for continuous Cr(VI) removal from aqueous solutions using sawdust as an adsorbent.
    Gupta S; Babu BV
    Bioresour Technol; 2009 Dec; 100(23):5633-40. PubMed ID: 19574040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds.
    Agarwal GS; Bhuptawat HK; Chaudhari S
    Bioresour Technol; 2006 May; 97(7):949-56. PubMed ID: 15964190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads.
    Samuel J; Pulimi M; Paul ML; Maurya A; Chandrasekaran N; Mukherjee A
    Bioresour Technol; 2013 Jan; 128():423-30. PubMed ID: 23201524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith.
    Suksabye P; Thiravetyan P; Nakbanpote W
    J Hazard Mater; 2008 Dec; 160(1):56-62. PubMed ID: 18406058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The removal and recovery of Cr(VI) by Li/Al layered double hydroxide (LDH).
    Hsu LC; Wang SL; Tzou YM; Lin CF; Chen JH
    J Hazard Mater; 2007 Apr; 142(1-2):242-9. PubMed ID: 16978767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: column test.
    Boni MR; Sbaffoni S
    J Hazard Mater; 2009 Jul; 166(2-3):1087-95. PubMed ID: 19153005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of chromium Cr(VI) by low-cost chemically activated carbon materials from water.
    Yue Z; Bender SE; Wang J; Economy J
    J Hazard Mater; 2009 Jul; 166(1):74-8. PubMed ID: 19091466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of chromium(VI) from water and wastewater by using riverbed sand: kinetic and equilibrium studies.
    Sharma YC; Weng CH
    J Hazard Mater; 2007 Apr; 142(1-2):449-54. PubMed ID: 17059866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon: a comparative study.
    Quintelas C; Fernandes B; Castro J; Figueiredo H; Tavares T
    J Hazard Mater; 2008 May; 153(1-2):799-809. PubMed ID: 17933461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of the Cr(VI) transport in typical soils of the North of Portugal.
    Fonseca B; Teixeira A; Figueiredo H; Tavares T
    J Hazard Mater; 2009 Aug; 167(1-3):756-62. PubMed ID: 19216027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis.
    Demir A; Arisoy M
    J Hazard Mater; 2007 Aug; 147(1-2):275-80. PubMed ID: 17275186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of using microalgal biomass cultured in domestic wastewater for the removal of chromium pollutants.
    Han X; Wong YS; Wong MH; Tam NF
    Water Environ Res; 2008 Jul; 80(7):647-53. PubMed ID: 18710148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and evaluation on removal of hexavalent chromium from aqueous systems using fixed bed column.
    Chauhan D; Sankararamakrishnan N
    J Hazard Mater; 2011 Jan; 185(1):55-62. PubMed ID: 20943316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.