These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
589 related articles for article (PubMed ID: 17604230)
1. Vasomotor effects of noradrenaline, acetylcholine, histamine, 5-hydroxytryptamine and bradykinin on snake (Trimeresurus flavoviridis) basilar arteries. Yoshinaga N; Okuno T; Watanabe Y; Matsumoto T; Shiraishi M; Obi T; Yabuki A; Miyamoto A Comp Biochem Physiol C Toxicol Pharmacol; 2007 Nov; 146(4):478-83. PubMed ID: 17604230 [TBL] [Abstract][Full Text] [Related]
2. Characterization of bradykinin-induced endothelium-independent contraction in equine basilar artery. Ueno D; Yabuki A; Obi T; Shiraishi M; Nishio A; Miyamoto A J Vet Pharmacol Ther; 2009 Jun; 32(3):264-70. PubMed ID: 19646091 [TBL] [Abstract][Full Text] [Related]
3. Vasomotor effects of noradrenaline, 5-hydroxytryptamine, angiotensin II, bradykinin, histamine, and acetylcholine on the bat (Rhinolophus ferrumequinum) basilar artery. Islam MZ; Kojima S; Sameshima M; Obi T; Yamazaki-Himeno E; Shiraishi M; Miyamoto A Comp Biochem Physiol C Toxicol Pharmacol; 2021 Dec; 250():109190. PubMed ID: 34536573 [TBL] [Abstract][Full Text] [Related]
4. Histamine-induced modulation of vascular tone in the isolated chicken basilar artery: a possible involvement of endothelium. Okuno T; Yabuki A; Shiraishi M; Obi T; Miyamoto A Comp Biochem Physiol C Toxicol Pharmacol; 2008 Apr; 147(3):339-44. PubMed ID: 18280220 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the vasodilatory effects of bradykinin in isolated dog renal arteries and in buffer-perfused dog kidneys. Malomvölgyi B; Hadházy P; Tekes K; Koltai MZ; Pogátsa G Acta Physiol Hung; 1996; 84(1):9-18. PubMed ID: 8993670 [TBL] [Abstract][Full Text] [Related]
6. Vasomotor effects of acetylcholine, bradykinin, noradrenaline, 5-hydroxytryptamine, histamine and angiotensin II on the mouse basilar artery. Islam MZ; Watanabe Y; Nguyen HT; Yamazaki-Himeno E; Obi T; Shiraishi M; Miyamoto A J Vet Med Sci; 2014 Oct; 76(10):1339-45. PubMed ID: 24942113 [TBL] [Abstract][Full Text] [Related]
7. Role of nitric oxide in the contractile response to 5-hydroxytryptamine of the basilar artery from Wistar Kyoto and stroke-prone rats. Salomone S; Morel N; Godfraind T Br J Pharmacol; 1997 Jul; 121(6):1051-8. PubMed ID: 9249238 [TBL] [Abstract][Full Text] [Related]
8. Vasomotor effects of 5-hydroxytryptamine, histamine, angiotensin II, acetylcholine, noradrenaline, and bradykinin on the cerebral artery of bottlenose dolphin (Tursiops truncatus). Islam MZ; Sawatari Y; Kojima S; Kiyama Y; Nakamura M; Sasaki K; Otsuka M; Obi T; Shiraishi M; Miyamoto A J Vet Med Sci; 2020 Oct; 82(10):1456-1463. PubMed ID: 32814751 [TBL] [Abstract][Full Text] [Related]
9. Differential vasomotor action of noradrenaline, serotonin, and histamine in isolated basilar artery from rat and guinea-pig. Chang JY; Hardebo JE; Owman C Acta Physiol Scand; 1988 Jan; 132(1):91-102. PubMed ID: 2906211 [TBL] [Abstract][Full Text] [Related]
10. Biphasic responses of equine colonic vessel rings to vasoactive inflammatory mediators. Venugopalan CS; Moore RM; Holmes EP; Sedrish SA; Koch CE J Auton Pharmacol; 1998 Aug; 18(4):231-7. PubMed ID: 9788293 [TBL] [Abstract][Full Text] [Related]
11. Characterization of 5-hydroxytryptamine-induced contraction and acetylcholine-induced relaxation in isolated chicken basilar artery. Matsumoto F; Watanabe Y; Obi T; Islam MZ; Yamazaki-Himeno E; Shiraishi M; Miyamoto A Poult Sci; 2012 May; 91(5):1158-64. PubMed ID: 22499874 [TBL] [Abstract][Full Text] [Related]
12. Effects of chronic diabetes on vascular responses of basilar artery and aorta from rabbits with alloxan-induced diabetes. Abiru T; Kamata K; Kasuya Y Res Commun Chem Pathol Pharmacol; 1991 Oct; 74(1):71-87. PubMed ID: 1801104 [TBL] [Abstract][Full Text] [Related]
13. Endothelial modulation of vascular tone in isolated porcine and bovine basilar arteries. Miyamoto A; Matsumoto M; Nishio A J Vet Med Sci; 1994 Oct; 56(5):947-50. PubMed ID: 7532439 [TBL] [Abstract][Full Text] [Related]
14. Microvascular versus macrovascular dysfunction in type 2 diabetes: differences in contractile responses to endothelin-1. Sachidanandam K; Harris A; Hutchinson J; Ergul A Exp Biol Med (Maywood); 2006 Jun; 231(6):1016-21. PubMed ID: 16741041 [TBL] [Abstract][Full Text] [Related]
15. High-salt diet and responses of the pressurized mesenteric artery of the dog to noradrenaline and acetylcholine. Sofola O; Knill A; Myers D; Hainsworth R; Drinkhill M Clin Exp Pharmacol Physiol; 2004 Oct; 31(10):696-9. PubMed ID: 15554910 [TBL] [Abstract][Full Text] [Related]
16. Role of ACE and NEP in bradykinin-induced relaxation and contraction response of isolated porcine basilar artery. Miyamoto A; Murata S; Nishio A Naunyn Schmiedebergs Arch Pharmacol; 2002 May; 365(5):365-70. PubMed ID: 12012022 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of histamine-induced relaxation in bovine small adrenal cortical arteries. Zhang DX; Gauthier KM; Campbell WB Am J Physiol Endocrinol Metab; 2005 Dec; 289(6):E1058-63. PubMed ID: 16076876 [TBL] [Abstract][Full Text] [Related]
19. Evidence for specific regional patterns of responses to different vasoconstrictors and vasodilators in sheep isolated pulmonary arteries and veins. Kemp BK; Smolich JJ; Cocks TM Br J Pharmacol; 1997 Jun; 121(3):441-50. PubMed ID: 9179385 [TBL] [Abstract][Full Text] [Related]
20. Endothelium-dependent regulation of vascular tone of the porcine ophthalmic artery. Yao K; Tschudi M; Flammer J; Lüscher TF Invest Ophthalmol Vis Sci; 1991 May; 32(6):1791-8. PubMed ID: 2032802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]