These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17604420)

  • 1. Use of triage strategies in the WHO signal-detection process.
    Lindquist M
    Drug Saf; 2007; 30(7):635-7. PubMed ID: 17604420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing triage logic as a new strategy for the detection of signals in the WHO Drug Monitoring Database.
    Ståhl M; Lindquist M; Edwards IR; Brown EG
    Pharmacoepidemiol Drug Saf; 2004 Jun; 13(6):355-63. PubMed ID: 15170764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian confidence propagation neural network.
    Bate A
    Drug Saf; 2007; 30(7):623-5. PubMed ID: 17604417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian neural network method for adverse drug reaction signal generation.
    Bate A; Lindquist M; Edwards IR; Olsson S; Orre R; Lansner A; De Freitas RM
    Eur J Clin Pharmacol; 1998 Jun; 54(4):315-21. PubMed ID: 9696956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A retrospective evaluation of a data mining approach to aid finding new adverse drug reaction signals in the WHO international database.
    Lindquist M; Ståhl M; Bate A; Edwards IR; Meyboom RH
    Drug Saf; 2000 Dec; 23(6):533-42. PubMed ID: 11144660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Feasibility Study of Drug-Drug Interaction Signal Detection in Regular Pharmacovigilance.
    Hult S; Sartori D; Bergvall T; Hedfors Vidlin S; Grundmark B; Ellenius J; Norén GN
    Drug Saf; 2020 Aug; 43(8):775-785. PubMed ID: 32681439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A data mining approach for signal detection and analysis.
    Bate A; Lindquist M; Edwards IR; Orre R
    Drug Saf; 2002; 25(6):393-7. PubMed ID: 12071775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the impact of drug safety signals from the WHO database presented in 'SIGNAL': results from a questionnaire of National pharmacovigilance Centres.
    Ståhl M; Edwards IR; Bowring G; Kiuru A; Lindquist M
    Drug Saf; 2003; 26(10):721-7. PubMed ID: 12862506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of stratification on adverse drug reaction surveillance.
    Hopstadius J; Norén GN; Bate A; Edwards IR
    Drug Saf; 2008; 31(11):1035-48. PubMed ID: 18840023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety Concerns Reported by Patients Identified in a Collaborative Signal Detection Workshop using VigiBase: Results and Reflections from Lareb and Uppsala Monitoring Centre.
    Watson S; Chandler RE; Taavola H; Härmark L; Grundmark B; Zekarias A; Star K; van Hunsel F
    Drug Saf; 2018 Feb; 41(2):203-212. PubMed ID: 28933055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database.
    Szarfman A; Machado SG; O'Neill RT
    Drug Saf; 2002; 25(6):381-92. PubMed ID: 12071774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal detection in the pharmaceutical industry: integrating clinical and computational approaches.
    Hauben M
    Drug Saf; 2007; 30(7):627-30. PubMed ID: 17604418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of measures of disproportionality for signal detection on adverse drug reaction spontaneous reporting database of Guangdong province in China.
    Li C; Xia J; Deng J; Jiang J
    Pharmacoepidemiol Drug Saf; 2008 Jun; 17(6):593-600. PubMed ID: 18432629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department.
    Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W
    Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-mining analyses of pharmacovigilance signals in relation to relevant comparison drugs.
    Bate A; Lindquist M; Orre R; Edwards IR; Meyboom RH
    Eur J Clin Pharmacol; 2002 Oct; 58(7):483-90. PubMed ID: 12389072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computerized system for signal detection in spontaneous reporting system of Shanghai China.
    Ye X; Fu Z; Wang H; Du W; Wang R; Sun Y; Gao Q; He J
    Pharmacoepidemiol Drug Saf; 2009 Feb; 18(2):154-8. PubMed ID: 19115240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Surveillance and detection of unusual events in toxicovigilance: Review of relevant methods].
    Faisandier L; Fouillet A; Bicout DJ; Golliot F; Ahmed I; Bringay S; Eilstein D
    Rev Epidemiol Sante Publique; 2015 Apr; 63(2):119-31. PubMed ID: 25819992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the WHO programme on International Drug Monitoring in coordinating worldwide drug safety efforts.
    Olsson S
    Drug Saf; 1998 Jul; 19(1):1-10. PubMed ID: 9673854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paediatric safety signals identified in VigiBase: Methods and results from Uppsala Monitoring Centre.
    Star K; Sandberg L; Bergvall T; Choonara I; Caduff-Janosa P; Edwards IR
    Pharmacoepidemiol Drug Saf; 2019 May; 28(5):680-689. PubMed ID: 30767342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decision support methods for the detection of adverse events in post-marketing data.
    Hauben M; Bate A
    Drug Discov Today; 2009 Apr; 14(7-8):343-57. PubMed ID: 19187799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.