These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17604889)

  • 1. Phytoextraction of metals from soils: how far from practice?
    Van Nevel L; Mertens J; Oorts K; Verheyen K
    Environ Pollut; 2007 Nov; 150(1):34-40. PubMed ID: 17604889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.
    Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ
    Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies.
    Chaney RL; Angle JS; Broadhurst CL; Peters CA; Tappero RV; Sparks DL
    J Environ Qual; 2007; 36(5):1429-43. PubMed ID: 17766822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the phytoextraction potential of high biomass crop plants.
    Hernández-Allica J; Becerril JM; Garbisu C
    Environ Pollut; 2008 Mar; 152(1):32-40. PubMed ID: 17644228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing of outstanding individuals of Thlaspi caerulescens for cadmium phytoextraction.
    Schwartz C; Sirguey C; Peronny S; Reeves RD; Bourgaud F; Morel JL
    Int J Phytoremediation; 2006; 8(4):339-57. PubMed ID: 17305307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of phytoremediation capability of selected plant species for given trace elements.
    Fischerová Z; Tlustos P; Jirina Száková ; Kornelie Sichorová
    Environ Pollut; 2006 Nov; 144(1):93-100. PubMed ID: 16516363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.
    Liang HM; Lin TH; Chiou JM; Yeh KC
    Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofortification and phytoremediation.
    Zhao FJ; McGrath SP
    Curr Opin Plant Biol; 2009 Jun; 12(3):373-80. PubMed ID: 19473871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation.
    Catherine S; Christophe S; Louis MJ
    Int J Phytoremediation; 2006; 8(2):149-61. PubMed ID: 16924963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model.
    Maxted AP; Black CR; West HM; Crout NM; McGrath SP; Young SD
    Environ Pollut; 2007 Dec; 150(3):363-72. PubMed ID: 17379365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials.
    Li JT; Liao B; Dai ZY; Zhu R; Shu WS
    Chemosphere; 2009 Aug; 76(9):1233-9. PubMed ID: 19541343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five- and one-year field-scale experiments in Switzerland.
    Herzig R; Nehnevajova E; Pfistner C; Schwitzguebel JP; Ricci A; Keller C
    Int J Phytoremediation; 2014; 16(7-12):735-54. PubMed ID: 24933882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES.
    Dickinson NM; Baker AJ; Doronila A; Laidlaw S; Reeves RD
    Int J Phytoremediation; 2009 Feb; 11(2):97-114. PubMed ID: 28133994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review.
    Lebeau T; Braud A; Jézéquel K
    Environ Pollut; 2008 Jun; 153(3):497-522. PubMed ID: 17981382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity.
    Nissim WG; Hasbroucq S; Kadri H; Pitre FE; Labrecque M
    Int J Phytoremediation; 2015; 17(8):745-52. PubMed ID: 26030362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth conditions, elemental accumulation and induced physiological changes in Chinese cabbage.
    Moreno DA; Víllora G; Ruiz JM; Romero L
    Chemosphere; 2003 Aug; 52(6):1031-40. PubMed ID: 12781236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contaminated soils salinity, a threat for phytoextraction?
    Sirguey C; Ouvrard S
    Chemosphere; 2013 Apr; 91(3):269-74. PubMed ID: 23245576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warming and drought change trace element bioaccumulation patterns in a Mediterranean shrubland.
    Sardans J; Peñuelas J; Estiarte M
    Chemosphere; 2008 Jan; 70(5):874-85. PubMed ID: 17709128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Assessment of the Feasibility of Phytoextraction for the Stripping of Bioavailable Metals from Contaminated Soils.
    Santa-Cruz J; Robinson B; Krutyakov YA; Shapoval OA; Peñaloza P; Yáñez C; Neaman A
    Environ Toxicol Chem; 2023 Mar; 42(3):558-565. PubMed ID: 36582151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.