BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 17604910)

  • 1. Feasibility of multi-walled carbon nanotube probes in AFM anodization lithography.
    Sun Choi J; Bae S; Jung Ahn S; Hyun Kim D; Young Jung K; Han C; Choo Chung C; Lee H
    Ultramicroscopy; 2007 Oct; 107(10-11):1091-4. PubMed ID: 17604910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attachment of carbon nanotubes to atomic force microscope probes.
    Gibson CT; Carnally S; Roberts CJ
    Ultramicroscopy; 2007 Oct; 107(10-11):1118-22. PubMed ID: 17644251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-yield synthesis of conductive carbon nanotube tips for multiprobe scanning tunneling microscope.
    Konishi H; Murata Y; Wongwiriyapan W; Kishida M; Tomita K; Motoyoshi K; Honda S; Katayama M; Yoshimoto S; Kubo K; Hobara R; Matsuda I; Hasegawa S; Yoshimura M; Lee JG; Mori H
    Rev Sci Instrum; 2007 Jan; 78(1):013703. PubMed ID: 17503924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex dynamics of carbon nanotube probe tips.
    Lee SI; Howell SW; Raman A; Reifenberger R; Nguyen CV; Meyyappan M
    Ultramicroscopy; 2005 May; 103(2):95-102. PubMed ID: 15774270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips.
    Edgeworth JP; Burt DP; Dobson PS; Weaver JM; Macpherson JV
    Nanotechnology; 2010 Mar; 21(10):105605. PubMed ID: 20160341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of carbon nanotube AFM probes using the Langmuir-Blodgett technique.
    Lee JH; Kang WS; Choi BS; Choi SW; Kim JH
    Ultramicroscopy; 2008 Sep; 108(10):1163-7. PubMed ID: 18572322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fabrication of carbon nanotube probes utilizing ultra-high vacuum transmission electron microscopy.
    Chin SC; Chang YC; Chang CS
    Nanotechnology; 2009 Jul; 20(28):285307. PubMed ID: 19546489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of single-walled carbon nanotube probe-sample multistability in tapping mode AFM imaging.
    Solares SD; Esplandiu MJ; Goddard WA; Collier CP
    J Phys Chem B; 2005 Jun; 109(23):11493-500. PubMed ID: 16852407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing Ohmic contacts for in situ current-voltage characteristic measurements on a carbon nanotube inside the scanning electron microscope.
    Chen Q; Wang S; Peng LM
    Nanotechnology; 2006 Feb; 17(4):1087-98. PubMed ID: 21727386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degeneracy and instability of nanocontacts between conductive tips and hydrogenated nanocrystalline Si surfaces in conductive atomic force microscopy.
    Cavalcoli D; Rossi M; Tomasi A; Cavallini A
    Nanotechnology; 2009 Jan; 20(4):045702. PubMed ID: 19417328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct nanofabrication of copper on silicon substrate by electrochemical atomic force microscope lithography.
    Kwon G; Lee H
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7076-9. PubMed ID: 19908731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of carbon nanotube tipped atomic force microscopy in liquid.
    Korayem MH; Ebrahimi N
    Microsc Microanal; 2013 Jun; 19(3):761-8. PubMed ID: 23659615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of nanoscale recording mark on Ge2Sb2Te5 film.
    Kim J; Kwon MH; Song KB
    Ultramicroscopy; 2008 Sep; 108(10):1246-50. PubMed ID: 18572324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient attachment of carbon nanotubes to conventional and high-frequency AFM probes enhanced by electron beam processes.
    Slattery AD; Blanch AJ; Quinton JS; Gibson CT
    Nanotechnology; 2013 Jun; 24(23):235705. PubMed ID: 23669234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscope anodization lithography using pulsed bias voltage synchronized with resonance frequency of cantilever.
    Bae S; Han C; Kim MS; Choo Chung C; Lee H
    Nanotechnology; 2005 Oct; 16(10):2082-5. PubMed ID: 20817975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why nano-oxidation with carbon nanotube probes is so stable: II. Bending behaviour of CNT probes during nano-oxidation.
    Kuramochi H; Tokizaki T; Ando K; Yokoyama H; Dagata JA
    Nanotechnology; 2007 Apr; 18(13):135704. PubMed ID: 21730389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology.
    Wong SS; Joselevich E; Woolley AT; Cheung CL; Lieber CM
    Nature; 1998 Jul; 394(6688):52-5. PubMed ID: 9665127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the carbon nanotube probe tilt angle on the effective probe stiffness and image quality in tapping-mode atomic force microscopy.
    Solares SD; Matsuda Y; Goddard WA
    J Phys Chem B; 2005 Sep; 109(35):16658-64. PubMed ID: 16853119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new AFM-HRTEM combined technique for probing isolated carbon nanotubes.
    Kuwahara S; Sugai T; Shinohara H
    Nanotechnology; 2009 Jun; 20(22):225702. PubMed ID: 19436091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable formation of nanoscale patterns on TiO2 by conductive-AFM nanolithography.
    Garipcan B; Winters J; Atchison JS; Cathell MD; Schiffman JD; Leaffer OD; Nonnenmann SS; Schauer CL; Pişkin E; Nabet B; Spanier JE
    Langmuir; 2008 Aug; 24(16):8944-9. PubMed ID: 18646874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.